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Preface

The aim of this book is twofold: to provide an introduction for newcomers to
state of the art computer simulation techniques in space plasma physics and
an overview of current developments. Computer simulation has reached a stage
where it can be a highly useful tool for guiding theory and for making predictions
of space plasma phenomena, ranging from microscopic to global scales.

The various articles are arranged, as much as possible, according to the un-
derlying simulation technique, starting with the technique that makes the least
number of assumptions: a fully kinetic approach which solves the coupled set of
Maxwell’s equations for the electromagnetic field and the equations of motion
for a very large number of charged particles (electrons and ions) in this field.
Clearly, this is also the computationally most demanding model. Therefore, even
with present day high performance computers, it is the most restrictive in terms
of the space and time domain and the range of particle parameters that can be
covered by the simulation experiments.

It still makes sense, therefore, to also use models, which due to their simpli-
fying assumptions, seem less realistic, although the effect of these assumptions
on the outcome of the simulation experiments needs to be carefully assessed.
In fact, using a model which is not realistic in every respect may, instead of a
limitation, even represent a particular strength of simulation. Such models allow
isolating particular physical mechanisms, something which is often not possible
with space observations or even with laboratory experiments, in view of their
complexity. In this manner our theoretical understanding can be advanced.

One such simplification, often also employed in theoretical treatments, uses
of the fact that plasma waves are often nearly electrostatic. Corresponding codes
are not only simpler, because there is no need to compute magnetic field per-
turbations. They are also more efficient, because wave phase speeds that need
to be resolved are generally much smaller than for electromagnetic waves. By
comparing electrostatic and electromagnetic code results, one can easily assess
the importance of electromagnetic effects in plasma dynamics.

Space plasmas, in contrast to laboratory devices, are very extended coupled
systems. Boundary conditions, which a computation necessarily has to introduce,
are thus always somewhat artificial. Using two- or even one-dimensional models
allows minimizing this artifact in the remaining dimensions. Especially with one-
dimensional models, however, careful analysis must ensure that they do not too
much restrict interaction mechanisms, between particles and waves, for example.
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Even the fully kinetic simulations by the particle in cell (PIC) simulation
technique simplifies the computational task by concentrating on collective, long
range electromagnetic fields, which dominate the dynamics of most space plas-
mas. This method of representing the plasma by finite size particles still leaves
background statistical noise, with effects similar to particle collisions. It is re-
duced only as N−

1
2 , as the number of such super particles increases. A method

to more efficiently reduce the noise level is to split the particle distribution func-
tion, when this seems possible, into a fixed background f0 and a perturbation
δf and representing only the latter by simulation particles.

In a dusty plasma, however, the short range forces, which describe collisions,
become important, at least between dust grains. The evaluation of these forces
for N particles requires the summation of N2 interactions. Moreover, dust grains
are so much more massive than plasma ions and electrons, and hence move on
vastly different time scales, which also largely prohibits using the same simulation
technique as for the background plasma. One can, however, take advantage of this
disparity in characteristic scales, by combining molecular dynamics simulation
techniques for the dust grains with a description, obtained from linear kinetic
theory, of the plasma as a dielectric which modifies the forces on dust grains.

A very significant reduction in computational cost arises if at least one par-
ticle species can reasonably be represented by a simple fluid model. In so called
hybrid models, usually the electrons are represented in this way, whereas for
the ions a fully kinetic description by particles is used. Situations in which, by
contrast, electron kinetic effects dominate are also possible, of course.

The most significant reduction in computational cost arises if all particle
species are represented by fluids, or even a single conducting fluid. In return, such
magnetohydrodynamic models nowadays allow global simulations of the entire
coupled solar wind-magnetospheric system. The ongoing challenge, as computer
power increases, is to make the description of the plasma and the boundary
conditions, especially the planetary boundary conditions, more complete. Pre-
dictions of space weather require as input, at another boundary, also realistic
descriptions of solar activity.

Along with advances in computer hardware, advanced programming and nu-
merical techniques, which make optimal use of this new computer power, such
as massively parallel computations or codes with variable mesh size, are equally
important. Finally, special attention must be paid to efficient techniques for an-
alyzing and representing the massive amount of data, which simulations, three-
dimensional computations especially, nowadays produce.

This book was inspired by the Sixth International School / Symposium for
Space Plasma Simulation, held at Garching, Germany, in September 2001. Its
invited tutorials and review lectures had the same aims. We therefore invited
authors to contribute who, in a collective effort, would give a most coherent
and reasonably complete picture of this diverse and rich field. To this end indi-
vidual contributions were made available to all contributing authors during the
preparation phase of this book, and authors were encouraged to freely exchange
comments. In addition, each contribution was subject to a formal peer review
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process. We feel very fortunate to have found such highly qualified authors who,
as a group, have indeed covered a huge range of topics, as the table of contents
shows. Our thanks go to them, but also to the referees who helped to further
improve the presentation.

Garching and Katlenburg-Lindau
December 2002 J. Büchner, C. T. Dum, M. Scholer
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Orléans cedex 2, 45071
France

Gurudas Ganguli
Plasma Physics Division
Naval Research Laboratory
Washington, DC 20375,
USA

Tamas I. Gombosi
Center for Space Environment
Modeling
The University of Michigan,
Ann Arbor, MI 48109-2143
USA

Joseph D. Huba
Plasma Physics Division
Naval Research Laboratory
Washington, DC 20375,
USA

Glenn Joyce
Plasma Physics Division
Naval Research Laboratory
Washington, DC 20375,
USA

Homa Karimabadi
Electrical and Computer Engineering
Department
University of California San Diego
La Jolla, CA 92093,
USA

Martin Lampe
Plasma Physics Division
Naval Research Laboratory
Washington, DC 20375,
USA

Bertrand Lembège
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Particle-in-Cell Simulation of Plasmas –
A Tutorial

Philip L. Pritchett

Department of Physics and Astronomy, University of California, Los Angeles,
CA 90095-1547, USA

Abstract. This chapter serves as a tutorial introduction to the field of particle-in-cell
(PIC) simulation of plasmas. The full particle version of these models, in which both
the electrons and ions are treated as particles, makes no approximations to the basic
laws of mechanics and electricity and magnetism, and thus the full range of collisionless
plasma physics is included in such a model. The basic techniques involved in a PIC
model are illustrated: accumulation of the charge and current densities on a spatial
grid, time integration of the field and particle equations, and limitations imposed by
the underlying kinetic physics of a plasma. Various approximations to the full set of
Maxwell’s equations are described as well as the case of hybrid models (particle ions,
fluid electrons) in which fluid equations are used to model the slow time evolution of
high frequency phenomena, thus allowing a study of lower frequency kinetic phenomena
on longer temporal and larger spatial scales. Examples of PIC simulations of magnetic
reconnection are discussed.

1 Introduction

Plasma is frequently characterized as the fourth state of matter. It consists of
electrons, ions, and neutral atoms, usually at temperatures above 104 Kelvin.
Plasma is pervasive throughout the universe: from stars to the sun to the Earth’s
magnetosphere to terrestrial experiments attempting to harness the power of
thermonuclear fusion. As in most fields of science, the traditional approaches
to studying the properties of plasmas have involved experiment and observa-
tion on the one hand and analytical techniques based on fundamental physical
laws on the other. Progress comes from an interplay between these approaches:
one probes nature through experiments, and the results are used to confirm or
disprove the theoretical expectations.

The explosive growth in the power of computers over the past half century
has led to the development of a third approach to the study of science in general
and plasma physics in particular: computational physics. The impact of this al-
ternative approach has been particularly prominent in plasma physics. The basic
laws governing plasma behavior, namely the laws of Newton and Maxwell, are
well known, but the consequences of these laws for a complex system consisting
of perhaps 1020 or more particles are frequently impossible to determine. Like-
wise, the necessary experiments may be difficult and expensive to perform, either
because the plasma is located far away and must thus be probed via spacecraft
or because one must construct a large device to achieve the desired plasma con-

J. Büchner, C.T. Dum, M. Scholer (Eds.): LNP 615, pp. 1–24, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 Philip L. Pritchett

ditions in a laboratory setting. Given these difficulties, computer simulation of
plasmas has frequently proven to be a more practical means to make progress.

Traditionally, there have been two complementary approaches to computa-
tional plasma physics. One emphasizes the fluid nature of plasma and proceeds
by solving numerically the magnetohydrodynamic equations of a plasma assum-
ing approximate transport coefficients. The other gives primacy to the kinetic
interactions among the constituent particles of the plasma and the electromag-
netic field. The fluid approach is more amenable to treating large scale properties
of plasmas involving mass, momentum, and flux transport, while the kinetic de-
scription provides a more accurate treatment of many local and quasi-local pro-
cesses. This chapter will be concerned with only the kinetic approach to plasma
simulation.

The usual basis for analytic treatments of a collisionless plasma is the Vlasov
equation:

∂fj

∂t
+ v · ∂fj

∂x
+
qj
mj

(
E +

v × B

c

)
· ∂fj

∂v
= 0 . (1)

Here, fj(x,v, t) is the distribution function of the jth species, and the electric
and magnetic fields are determined by Maxwell’s equations. The Vlasov equa-
tion represents a partial differential equation in a six-dimensional phase space
plus time. To fully resolve this entire phase space requires an amount of com-
puter memory that exceeds what is available on today’s biggest machines. For
example, to have 30/30/30 point resolution of velocity space and 128/128/128 in
configuration space would require approximately 103 Gbytes. While numerical
models have been developed for solving the Vlasov-Maxwell equations directly
(e.g., [43], [44]), they are typically restricted to two or three phase space dimen-
sions and frequently assume a fixed magnetic field. We shall not consider this
direct approach further.

The more common approach to kinetic modeling of plasma is to represent
fj by a number of macroparticles and to compute the particle orbits in the self-
consistent electric and magnetic fields. This is equivalent to solving the Vlasov
equation by the method of characteristics. The early models (e.g., [17]) treated
the particles as discrete points and computed the electric force acting on each
particle by summing explicitly the Coulomb interaction with each of the other
N−1 particles. The number of pairs of such interactions is given by N(N−1)/2.
This N2 variation is a very restrictive limitation on the number of particles
that can be employed. For example, suppose that we consider a calculation
involving 107 particles (a medium size run by today’s standards) extending over
104 time steps. If the evaluation of the force is estimated to involve 10 arithmetic
operations, then the total number of operations ∼ 5 × 1018. If each operation
requires ∼ 10−9 s, then the total time ∼ 5 × 109 s ≈ 160 years. This is clearly
not practical.

The solution which was developed and has now become standard is to in-
troduce a spatial grid on which the particles’ charge and current densities are
accumulated using an interpolation scheme. The field equations (all or some
of Maxwell’s equations) are solved on this grid, and the forces acting on the
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particles are obtained by interpolating the fields back to the particles. This is
the “particle-in-cell” (PIC) technique. This procedure eliminates fluctuations at
scales smaller than the grid spacing and also reduces the number of operations
per time step to ∼ N logN . To be internally consistent, PIC models must deal
with situations in which any fields are slowly varying on the scale of the grid
spacing so that the normal modes of the plasma are properly resolved. We will
be exclusively concerned with PIC models in this chapter. There is a very ex-
tensive and detailed literature on the subject, including review articles [18], [25],
the monographs Methods in Computational Physics [1], [2], textbooks [5], [37],
[82], and the collections of papers from the previous International Schools for
Space Simulation [3], [54], [63], [64]. There are, however, instances where certain
aspects of plasma systems involving short range forces are effectively treated by
the direct N particle or “molecular dynamics” approach [37]. An example is the
case of dusty plasmas discussed in the chapter by Joyce et al. [40] in this volume.

The outline of the chapter is as follows. In Sect. 2 we discuss the full par-
ticle version of a PIC simulation in terms of a model that solves the full set
of Maxwell’s equations. Consideration is given to the accumulation of the par-
ticle source terms on the grid, the time advancement of the field and particle
equations, and consequences of the spatial grid. The modifications introduced
by various approximations to Maxwell’s equations are discussed as is the role
of implicit vs. explicit models. Section 3 discusses hybrid simulations in which
the electrons are described by fluid equations. Some examples of full particle
simulations are presented in Sect. 4. Section 5 contains a final discussion.

2 Full Particle Models

In a full particle model one follows the motion of both electrons and ions in the
self-consistent electric and magnetic fields obtained from a solution of Maxwell’s
equations. Relativistic effects are readily included by the use of the Lorentz
equations of motion for the particles. At this level one has introduced no ap-
proximations in the basic laws of mechanics and electricity and magnetism, and
thus the full range of collisionless plasma physics is included in such a model.
Such a model represents the closest approach to mimicing real plasma behavior
of all simulation models. As we shall see, this fidelity to nature also is the source
of many limitations.

2.1 Electromagnetic Models

Models which solve the full set of Maxwell’s equations are termed “electromag-
netic.” One has the choice of working directly with the fields E and B, in which
case the equations are

∂E/∂t = c(∇ × B)− 4πJ , (2)

∂B/∂t = −c(∇ × E) , (3)



4 Philip L. Pritchett

∇ ·E = 4π� , ∇ ·B = 0 , (4)

or introducing the vector and scalar potentials A and Φ, in which case the field
equations (in the Coulomb gauge) are

∂2A/∂t2 = c2∇2A + 4πcJT , (5)

∇2Φ = −4π� , (6)

B = ∇ × A , E = −(1/c)∂A/∂t−∇Φ . (7)

Here, the transverse current JT is given by

JT = J − (1/4π)∇(∂Φ/∂t) . (8)

We shall primarily discuss the E,B version which is slightly simpler numerically;
comparison with theory, however, is sometimes more convenient in terms of A,Φ.
There appears to be no fundamental numerical advantage in favor of one or the
other [50].

Particle Source Terms

The first step in solving Maxwell’s equations is to determine the source terms
J and �. As we discussed in the Introduction, the essence of the PIC approach
is that the current and charge densities are accumulated on a spatial grid from
the particle data using an interpolation procedure. The earliest PIC codes used
the nearest grid point approximation, but this approach resulted in excessive
fluctuations as particles moved across the grid. Most codes now use a linear
interpolation scheme, which involves 2 points in 1D, 4 points in 2D, and 8 points
in 3D. For example, given a 1-D spatial grid with uniform spacing Δg, the charge
qj of a particle located at xj makes contributions to the charge density at 2 grid
points as follows:

�(xL) = qj(1−Δxj/Δg) ,
�(xL + 1) = qjΔxj/Δg , (9)

where xL is the grid point immediately to the left of the particle and Δxj ≡ xj−
xL. Thus the charge is distributed between the 2 nearest grid points. The total
charge density on the grid is then obtained by summing over all the particles. A
similar procedure is used for the current density.

Time Integration

In analytic treatments of Maxwell’s equations, it is sufficient to solve the time-
dependent equations (2) and (3). If the fields satisfy the divergence equations (4)
initially, they will at all subsequent times as well. The situation is more compli-
cated for PIC models, but the time-dependent equations still receive dominant
attention. One normally solves (2) and (3) by introducing a leapfrog scheme as
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Fig. 1. The time sequencing of particle and field quantities involved in advancing the
electromagnetic simulation code through one cycle

illustrated in Fig. 1. E is defined at half-integral time steps (n− 1/2)Δt and B
at integral time steps nΔt. One then uses a finite difference approximation to
the time derivatives to advance the fields through a time step Δt:

En+1/2 = En−1/2 +Δt[c(∇ × Bn)− 4πJn] , (10)

Bn+1 = Bn − cΔt∇ × En+1/2 . (11)

Notice that the curls and the current density on the right hand side of (10) and
(11) are evaluated at a time midway between the old and new values of the
fields. Such a scheme is said to be “time-centered,” and the integration is then
accurate to second order in Δt. The relativistic particle equations of motion are
likewise integrated in time using a leapfrog scheme, with the particle coordinates
at the half-integral times and the momenta at the integral times. One cycle
of the model then involves the advancement from {rn−1/2

i ,vn
i ,E

n−1/2,Bn} to
{rn+1/2

i ,vn+1
i ,En+1/2,Bn+1}. (When the relativistic force equations are used,

one advances the momentum per unit mass u = p/m0 instead of the velocity v.
The Lorentz gamma factor is given by γ = (1 + u2/c2)1/2.)

What determines the choice of Δt? As an example, let us apply (10) and (11)
to the case of electromagnetic waves in vacuum (J = 0). We will also assume
that the spatial dependence of E and B can be expressed in terms of Fourier
amplitudes such that

E(k, t) = E0(k) exp[−iω(n− 1/2)Δt] , (12)

B(k, t) = B0(k) exp[−iωnΔt] . (13)

Substituting (12) and (13) into (10) and (11), we obtain

sin2(ωΔt/2) = k2c2(Δt)2/4 . (14)
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This is the dispersion relation that determines the wave frequency ω in terms
of the wavenumber k. As Δt → 0, we recover the expected relation ω = ±kc.
For finite Δt, we see that there are real solutions for ω only if k2c2(Δt)2 < 4.
For larger values of Δt, there are only complex conjugate solutions for ω, and
the solutions (12) and (13) will then grow exponentially in time. The leapfrog
integration scheme is then unstable. This is an example of a general result known
as the Courant-Friedrichs-Lewy [13] condition: for an explicit time integration
scheme the time step is limited by the largest k mode or highest frequency
oscillation that enters the problem.

In addition to being stable, we want the integration scheme to be accurate.
Thus we are also interested in the magnitude of the frequency error given by
(14) relative to the exact result ω0 = ±kc. For small kcΔt, the solution of (14)
is

ω = ±kc[1 + k2c2(Δt)2/24 + · · · ] . (15)

The second term in brackets represents the phase error introduced by the finite
time step. After a time T = NΔt, the accumulated phase error for the oscillation
will be (ω− ω0)T = ω0T (ω0Δt)2/24. Thus decreasing Δt will lower the error at
the expense of increasing the number of steps N .

Another important time step limitation arises from oscillations at the plasma
frequency ωpe = (4πn0e

2/ me)1/2. Using the same analysis as for the electromag-
netic wave example above, one finds that the leapfrog algorithm applied to a sim-
ple harmonic oscillator with frequency ωpe becomes unstable when ωpeΔt > 2.
Simulations with a thermal plasma [47] indicate that the instability threshold
is reduced to ωpeΔt > 1.62. For accurate reproduction of the plasma oscilla-
tions, one needs to choose a considerably smaller Δt; a typical choice is ωpeΔt ∼
0.1–0.2.

Spatial Grid

We have not yet dealt with the representation of the spatial derivatives in
Maxwell’s equations. Two different approaches have been used. One is to in-
troduce a finite difference approximation, exactly in analogy with the case of
the time derivatives. For reasons of accuracy, it is again desirable to employ a
centered difference approximation. This means that the spatial grids for E and
B should be displaced relative to each other. This is normally done based on the
Yee [92] lattice, which is a fully staggered grid mesh system. The components
of E and J are defined at midpoints of cell edges, while the components of B
are defined at the midpoints of the cell surfaces (see Fig. 1 of [88]). With such a
scheme, ∇ ·B = 0 will be maintained to machine roundoff. Poisson’s equation,
however, requires special attention. The problem arises from the fact that the
grid quantities J and � produced by most simple interpolation schemes may not
satisfy the continuity equation,

∂�/∂t+ ∇ · J = 0 . (16)

If this equation is violated, then the straightforward integration of (2) and (3)
will rapidly lead to the development of nonphysical fields which do not satisfy ∇·
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Fig. 2. Contour plots in the y,z plane of the magnetic field Bx and of the density at
time Ωt = 60. The left panels (a) and (b) are from a simulation with a full Poisson
correction for the electric field, while the right panels (c) and (d) are from a run with
no correction

E = 4π�. Thus, one must either adopt an interpolation scheme which rigorously
satisfies the continuity equation (e.g., [87], [88]) or else make a correction to
ensure that ∇ ·E = 4π� is maintained (e.g., [50]). This second scheme, which is
much simpler to implement, involves adding a correction δE to the electric field
computed from (2) which is determined by solving ∇2(δΦ) = −(4π� −∇ · E)
and setting δE = −∇δΦ.

Figures 2–4 illustrate the consequences of failing to ensure that the continuity
equation is satisfied. These results are from a 2-D simulation in the y,z plane
starting from the simple Harris neutral sheet with B0x(z) = B0 tanh(z/L). The
mass ratio is mi/me = 1, the current sheet thickness is ρ0/L = 0.5 (ρ0 is the
particle gyroradius in the B0 field), and the grid size is Ny × Nz = 128 × 128.
In this configuration the tearing mode instability cannot occur, but finite-ky

instabilities such as the drift kink mode [67], [70], [94] are allowed. Figures 2a
and 2b show contour plots of the magnetic field Bx and the density at time
Ωt = 60 obtained in a run with a full Poisson correction for the electric field.
A strong ky = 2 kink mode (wavenumber kyL = 0.79) is quite apparent. In
contrast, Figs. 2c and 2d show the corresponding plots where no correction was
applied to the electric field. It is clear that most of the kink structure has been
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Fig. 3. Time histories of the total E2
y field energy and the total kinetic energy in 2-

D y,z simulations with a full Poisson correction for the electric field (solid lines), no
correction (dashed lines) and a single-pass Point-Jacobi correction (dash-dot lines)

washed away and the density is dominated by non-physical short wavelength
noise.

Figure 3 shows the time history of the total E2
y field energy and of the

kinetic energy. The solid lines are for the run with the Poisson correction, while
the dashed lines are for the case with no correction. This latter case exhibits
unphysical energy growth. The dash-dot lines are for a run employing a single-
pass point-Jacobi correction rather than a full Poisson solution [48]. In this
approximation the correction potential δΦ = (Δ2

g/4)(4π�−∇ ·E). This provides
a significant improvement over the case of no correction. Figure 4 shows the time
history of the Az amplitude squared for mode 2. This demonstrates the failure
of the uncorrected run to preserve the growth of the kink mode after Ωt ≈ 30.

The second approach is to obtain the solution of (2)–(4) in Fourier space. The
transformations between coordinate space and Fourier space are carried out via
fast Fourier transforms (FFT) (see Appendix A of [5].) To this end, it is useful
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Fig. 4. Time history for the absolute value squared of the vector potential Az for mode
2 for the same set of simulations as in Fig. 3

to introduce the decomposition of an arbitrary vector S into its divergence free
(transverse) and curl free (longitudinal) parts:

k · ST(k) = 0 , k × SL(k) = 0 . (17)

From (4) it is clear that the magnetic field has only a transverse component.
The time-dependent Maxwell equations then become

∂ET(k)/∂t = ick × B(k)− 4πJT(k) , (18)

∂B(k)/∂t = −ick × ET(k) . (19)

Poisson’s equation determines the longitudinal part of E, ik ·EL(k) = 4π�(k).
Maxwell’s equations thus reduce to a set of algebraic equations for the Fourier
amplitudes. This Fourier solution is quite accurate, but it has the disadvantage
of being directly applicable only to cases where the system is periodic in each
spatial direction. Generalizations to cases involving combinations of periodic and
bounded coordinates were considered in [20].

Just as the plasma frequency ωpe imposes a restriction on the allowable time
step, so the Debye length λDe = vTe/ωpe = (kTe/4πn0e

2)1/2 imposes a re-
striction on the value of the grid spacing Δg. The problem arises when λDe

becomes considerably smaller than Δg. The effect of the spatial grid is to couple
plasma perturbations to perturbations at other wavelengths known as aliases.
This effect becomes larger when λDe � Δg, and it can lead to the growth of
a numerical instability that can cause heating of the initial Maxwellian plasma
[46], [56]. A general rule of thumb is that this effect has ignorable consequences
for λDe/Δg

>∼ 0.3 for the case of linear interpolation to and from the grid. Thus
typically λDe/Δg is chosen to be ∼ 0.5–1.0.
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2.2 Approximations to Maxwell’s Equations

In some cases, it may not be necessary or desirable to solve the full set of
Maxwell’s equations. A particularly simple approximation is to treat the mag-
netic field as a fixed external field. The only self-consistent field is then the
electric field, which is obtained from Poisson’s equation (6). Such a model is
termed “electrostatic.” It has the great advantage of eliminating the light waves
and thus removes the CFL constraint involving the speed of light. A number of
projects using a 1-D electrostatic PIC code are discussed in Chap. 5 of [5].

A scheme which retains self-consistent magnetic and inductive electric fields
but neglects radiation is the Darwin or magnetoinductive approximation [14]; it
is based on an expansion correct to order (v/c)2 [39]. This scheme neglects the
transverse part of the displacement current so that (2) reverts back to Ampère’s
law,

∇ × B = (4π/c)JT . (20)

This approximation alters the field equations from a hyperbolic set to an ellip-
tical set in which there is no longer any retardation effect. The solution for the
transverse part of E then involves a more complicated field equation obtained
by taking the curl of (3) and using the particle equations of motion to evaluate
(∂J/∂t)T [10], [32], [66]. While the Darwin approach has frequently been used
in 2-D simulations where it was possible to describe the electromagnetic fields
solely in terms of the out-of-plane vector potential component [21] (and also
in hybrid models, see Sect. 3), it loses its advantage in 3D and has particular
difficulty in specifying the boundary conditions for the field solution in nonperi-
odic geometries [33]. Many of the advantages of the Darwin scheme can be more
easily achieved by choosing an implicit scheme.

2.3 Explicit vs. Implicit Schemes

In all the time advancement schemes that we have considered so far, the new
field and particle values were calculated from field and particle values at previous
times only. Such a scheme is known as an “explicit” scheme. In order to be
stable, an explicit scheme must satisfy all the CFL constraints. In contrast, in
an “implicit” scheme the solution of the new quantities involves knowledge of
these quantities at the new time, thus forming a potentially very large system
of coupled nonlinear equations. The advantage of an implicit scheme is that it
will be stable (albeit perhaps inaccurate) for large time steps.

A very simple version of an implicit scheme actually appears in the leapfrog
algorithm for advancing the particles. The acceleration of a particle is given in
terms of the Lorentz force,

dvj/dt = (qj/mj)[E + (vj×B)/c] . (21)

Since the force depends on vj itself, the question arises as to how to evaluate
the right hand side. Using the leapfrog time scheme illustrated in Fig. 1, we can
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time center the force by introducing an average of the old and new velocities.
Thus the finite difference analog to (21) is

vn+1
j = vn

j + (qjΔt/mj)[En+1/2

+(1/2)(vn
j + vn+1

j )×Bn+1/2/c] , (22)

where Bn+1/2 ≡ (Bn + Bn+1)/2. This is an implicit equation because vn+1
j

appears on the right hand side. In this case, (22) comprises a set of three coupled
linear equations for the components of vn+1

j , and the solution can be obtained
using standard linear algebra techniques. An interesting consequence of this
implicit approach is that the particle’s gyromotion imposes no limit on the time
step. Although the orbit will not be followed accurately if ΩjΔt >∼ 1 (Ωj =
qjB/mjc is the cyclotron frequency), the positions and velocities will not blow
up.

One can use a similar approach to formulate the time advance for a fully
implicit PIC simulation (e.g., [49]). For simplicity, we consider only the electric
field contribution to the acceleration. Then we write

xn+3/2 = xn+1/2 +Δtvn+1 , (23)

vn+1 = vn +Δt(q/2m)[Ēn−1/2(xn+1/2)
+En+3/2(xn+1/2) , (24)

where the recursive filter

Ēn+1/2 ≡ (1/2)[Ēn−1/2 + En+3/2] . (25)

Note that the future positions xn+3/2 depend on the electric field En+3/2. But
this field is not yet known because it is determined from the charge density ρn+3/2

computed from the particle positions xn+3/2. Thus one has a set of nonlinear
coupled particle and field equations.

Techniques for making tractable the set of coupled equations in implicit
schemes were developed some 15–20 years ago. They fall into two general classes:
the use of moment equations and the direct approach. The motivation behind
the moment approach [8], [61] is the realization that over a single time step the
particle equations and the corresponding moment or fluid equations do not differ
very much. One can then use an implicit set of moment equations to estimate
the fields at the next time step. The particles are then advanced using these new
fields, and the moment equations are reinitialized at each time step using the
new particle information. The errors introduced by use of the moment equations
then do not propagate. In the direct (or kinematic) approach [4], [26], [51] one
predicts the future fields directly by means of linearization of the particle-field
equations about an estimate (extrapolation) for their values at the new time
level.

The potential advantages of the implicit approach are dramatic. Stable so-
lutions have been obtained using time steps on the order of 50–100 times as
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large as that allowed by an explicit scheme (e.g., [9], [34]). Nevertheless, because
of their substantially increased complexity and concerns about their reliability,
implicit schemes have not been widely used in the space physics community.

2.4 Implementation Issues

PIC simulations historically have been limited to treating configurations of lim-
ited spatial extent and temporal duration, with a relatively small number of
particles per Debye cell, with only one or two spatial dimensions, and with ex-
tremely simple boundary conditions. There are a number of approaches that
can overcome (at least in part) one or more of these limitations. As we have
already discussed, the time step constraints can be relaxed through the use of
an approximate subset of Maxwell’s equations or by the choice of an implicit
time integration scheme.

Uniform spatial meshes are normally employed in PIC codes and are neces-
sary for the use of FFTs, but they are not well suited to dealing with strongly
inhomogeneous systems. The chapter by Schriver [73] in this volume describes
the use of an irregular grid in modeling a portion of the auroral zone.

While PIC models are designed to study collisionless plasmas, the models
are not actually collisionless. The most important parameter in determining the
numerical collision time is the number of particles per Debye cell (e.g., [35],
[36]). This number is much smaller in PIC calculations, particularly in 2 and
3 dimensions, than for real plasma systems. The chapter by Sydora [81] in this
volume describes the δf method in which particles are used to represent only the
perturbed plasma distribution function. This method is particularly well suited
for studying the onset of weak instabilities.

Perhaps the most significant advance in extending the capabilities of PIC
models has been the development of massively parallel computers with their
vastly larger effective memories. Since the dominant part (∼90%) of the calcu-
lation in a PIC code involves interpolation between particles and the grid, it is
essential that these two data structures reside on the same processor. The pro-
cedure used to achieve this is the general concurrent particle-in-cell (GCPIC)
algorithm [55], [19]. The essential idea is that different processors are assigned
different regions of the simulation grid, and particles are assigned to processors
according to the spatial region they occupy. To implement this scheme with only
local interpolation, it is necessary to pass some field and particle data between
different processors. This is achieved either by explicit message passing (using for
example MPI), or, as described in the chapter by Cai et al. [11] in this volume,
High Performance Fortran. The development of massively parallel computing
has made possible large-scale 3-D PIC calculations.

3 Hybrid Models

In a hybrid model, a full particle description is retained for either the ions or
electrons, while the other species is described by fluid equations. While there
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are cases where it is the electrons that are treated as particles [58], in the over-
whelming majority of applications in space physics it is the ions that are the
particle species. We shall consider only this case. This model is well adapted to
problems involving waves in the vicinity of or below the ion cyclotron frequency.
Frequently, one assumes the quasi-neutral limit where the electron charge den-
sity is equal to that of the ions and neglects the electron inertia. In all cases
one neglects the displacement current, and the magnetic field is advanced using
Faraday’s law (3). A detailed discussion of hybrid models, including illustrative
examples, is given in the chapter by Winske et al. [91] in this volume. Here we
include a short description of the hybrid approach for completeness.

3.1 Massless Electron Models

In the simplest hybrid model, one neglects the electron mass in the generalized
Ohm’s law and assumes a scalar electron pressure. The electric field is then given
by

E = (∇ × B)×B/4πne− ui×B/c

−∇pe/ne+ ηen(ui − ue) , (26)

where we have used ∇ × B = 4πJ/c, ui and ue are the ion and electron fluid
velocities, and η is a phenomenological resistivity describing microscopic coupling
between the electrons and ions. The electron velocity ue can be expressed in
terms of ui and ∇ × B. To complete the fluid equations, one must specify an
electron equation of state. The usual choices are isothermal or adiabatic.

The assumption of massless electrons has an important consequence for
the allowable time step. Normally, the whistler wave spectrum is cutoff at the
electron cyclotron frequency Ωe. If me → 0, however, then the whistler fre-
quency spectrum is unbounded. This effect is most severe for parallel propa-
gating whistlers where the frequency scales like ω/Ωi = (kc/ωpi)2 for large k.
The largest wavenumber on the grid is kmax = π/Δg, and the corresponding
maximum phase velocity is vmax = ωmax/kmax = Ωikmax(c/ωpi)2. Thus the CFL
constraint on the whistler waves gives

ΩiΔt < (Δgωpi/c)2/π . (27)

Since one wants to resolve the c/ωpi scale, the time step is limited to a small
fraction of Ω−1

i .
A number of different time-advance schemes have been developed for the

hybrid model (see [71] and [89] for a review). One of the early 2-D schemes
is that of Harned [28]. Here the treatment of the particle motion employs the
standard leapfrog integration, while the time advance of the field equations (3)
and (26), with E and B defined at the same time interval, is accomplished using
a predictor-corrector method. The electric and magnetic fields are defined on
interlaced grids which have a relative separation of half a cell. To obtain spatially
centered finite difference expressions, bilinear finite differences on adjacent nodes
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on the interlaced grid are used. The method uses the same time step for both
particles and fields and requires two passes through the ion arrays per time step.

Since the ions do not respond on the short time scale set by the whistler
waves, and since the ion advance is much more time consuming than the field
update, it is advantageous to use a subcycling approach in which the field equa-
tions are advanced many times (of the order of 10–50) for each advance of the
ion particle variables. This subcycling approach was introduced by Terasawa et
al. [85], who used a second-order rational Runge-Kutta algorithm for both the
particles and fields. The larger time step for the ions represents a considerable
computational saving and has been employed in most recent hybrid schemes
(e.g., [60], [62], [80], [90]).

More recent algorithms have allowed the ions to be pushed only once per
time step. Winske and Quest [90] describe a moment method in which the fields
are subcycled using a fourth-order rational Runge-Kutta algorithm and an MHD
equation is used to advance the plasma fluid velocity. This equation includes an
advective term and an ion stress tensor which must be collected on the grid.
Matthews [62] in turn avoids the need for a pre-push of the ion velocities by
advancing the ion current density with an appropriate equation of motion. In
this scheme the advective term and the ion stress tensor of the moment method
are avoided, and the method is particularly well suited for modelling multiple
ion species.

3.2 Finite Electron Inertia

In investigating the behavior of current layers at spatial scales smaller than
the ion skin depth c/ωpi (e.g., [23], [45], [75]), it becomes important to include
the effects of the electron inertia. A modified form of the hybrid model can be
derived to treat this case. A detailed discussion of such models can be found in
the monograph by Lipatov [57]. Define the fields B′ and E′ by

B′ ≡ (1− δ2e∇2)B , (28)

E′ ≡ E + (me/e)∂ue/∂t , (29)

where E is given by the generalized Ohm’s law and δe = c/ωpe. From Ampère’s
Law one finds

(∂/∂t)∇2B = (4πe/c)∇×(∂/∂t)n(ue − ui) . (30)

If one neglects the unmagnetized ion response on the short spatial and temporal
scales of the electron physics, that is one neglects the number density and ion
current density variations, then combining (28)–(30) with Faraday’s law yields

∂B′/∂t = −c(∇ × E′) . (31)

This is one of the equations of what is normally described as electron magneto-
hydrodynamics [42].
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The generalized fields B′ and E′ are advanced in time as in the standard
hybrid model. At the end of each step, B must be unfolded from B′. Here, it
is usually assumed that c/ωpe remains uniform both in space and time, thus
neglecting any evolution in the electron scale structure [76]. The finite electron
inertial correction is neglected in the electric field which is used to advance the
ions forward in time [75] since this correction only becomes important at spatial
scales of δe. Changes in the electric field on this scale have very little effect on
the motion of the ions because of their large mass.

4 PIC Simulations of Collisionless Magnetic Reconnection

The conversion of energy stored in stressed magnetic fields into high speed
plasma flows and thermal energy via magnetic reconnection is a fundamental
process that occurs in many plasma systems possessing magnetic shear (e.g.,
[27], [79], [86]). In particular, magnetic reconnection plays a fundamental role
in the dynamics of the magnetosphere. It facilitates the entry of particles and
energy from the solar wind into the magnetosphere at the magnetopause and
allows the internal magnetospheric topology to change. Magnetic reconnection
relies on the presence of a dissipation mechanism in a localized region of space,
the so-called diffusion region. In a sufficiently collisional plasma, resistive MHD
theory is valid for describing this region and determining the reconnection rate.
In the magnetosphere, however, the classical collision rate is very small. In such a
collisionless plasma, the dissipation region is governed by the generalized Ohm’s
law, which can be written in the form

E = −1
c
ui×B +

(J × B)/c−∇ · P e

ne
− me

e

due

dt
. (32)

Here, ui(ue) is the ion (electron) fluid velocity, the current density J ≈ en(ui−
ue) (assuming quasineutrality), and P e is the electron pressure tensor. This
generalized Ohm’s law contains three new terms which are not present in the
MHD limit: the J × B or Hall term, the electron pressure gradient terms, and
the electron inertia terms. Each of these terms introduces new physics into the
system and has an associated characteristic length scale (e.g., [22]).

The simplest magnetic field configuration for studying reconnection is the
Harris neutral sheet [29]. Here the magnetic field B = Bx(z)x̂ reverses direction
over a characteristic half thickness L,

Bx(z) = −B0 tanh(z/L) , (33)

and the pressure is peaked at the null of the magnetic field so that the J × B
force is balanced by the pressure gradient,

P (z) = (B2
0/8π)sech

2(z/L) . (34)

Since the spatial variation occurs as a function of z only, this is referred to as a 1-
D current sheet. In ideal MHD, where the electric field is frozen into the plasma,



16 Philip L. Pritchett

the Harris 1-D current sheet is stable. In the presence of dissipation, however,
the sheet becomes unstable to a tearing instability which leads to the formation
of magnetic islands as a function of x along z = 0 [12], [53]. For a collisionless
plasma, the dissipation arises from electron and/or ion Landau damping. In the
Earth’s magnetotail the presence of a small Bz field in addition to the main field
(33) prevents the electron Landau interaction, and thus most treatments have
been concerned with the ion tearing mode.

Simulation of collisionless reconnection relevant to magnetospheric configura-
tions has been pursued for over 20 years. The representation of the reconnection
physics poses a severe computational challenge. First, the simulations must be
at least 2-D (x,z in magnetospheric coordinates). Second, the ion tearing mode
evolves on ion spatial (the skin depth c/ωpi) and temporal (the gyrofrequency
Ωi) scales. As we have discussed in Sect 2, however, with an explicit code the
grid resolution and time step are set by electron physics (or the even shorter
light transit time across a grid cell). Thus, the number of time steps required
in the simulation will scale like mi/me, and the number of grid points in each
dimension will scale like (mi/me)1/2. The total cost of a 3-D simulation will thus
scale like (mi/me)5/2 (in 2-D the cost scales like (mi/me)2). A final difficulty
involves the boundary conditions. The simple 1-D current sheet (33) must be
embedded into a more realistic open configuration (preferably in 3-D) in which
particles and magnetic flux can escape from the local reconnection region.

In many of the early simulations of ion tearing one simply assumed that
the electron dynamics were unimportant and that the electrons could thus be
treated as a charge-neutralizing background (a model first introduced in [21]).
This assumption is equivalent to assuming a mass ratio mi/me = 1, so that no
electrostatic effects can develop. Thus, Terasawa [83] studied the growth of an
explosive tearing mode instability in a one component plasma. He followed the
motion of 7000–10,000 particles on a 64× 30 grid. A full two-species simulation
was performed by Katanuma and Kamimura [41] using a mass ratio mi/me = 16
with a 64× 64 grid and 35,000 particles.

In the intervening years the dramatic growth in computational power has
substantially increased the scope of the simulations that can be performed. In
2-D one has now achieved a rather complete understanding of the nature of col-
lisionless reconnection and the structure of the diffusion region as a result of the
GEM magnetic reconnection challenge [6], and very high resolution simulations
(1600×640 grid, 2×108 total number of particles, mass ratio mi/me = 64) have
enabled Hoshino et al. [38] to determine the characteristic electron distributions
in different regions of the reconnection configuration.

In the GEM magnetic reconnection challenge a standard 2-D current sheet
configuration consisting of a 1-D Harris current sheet with an additional pertur-
bation to form a neutral line was studied by a variety of simulation models: full
particle, hybrid, two-fluid with and without finite electron inertia, and resistive
MHD. It was found that, with the exception of resistive MHD, all the models
gave nearly identical results for the reconnection rate. This rate corresponded to
an inflow speed cEy/B0 ≈ 0.1–0.2 vA and was much faster than that obtained
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Fig. 5. Velocity profiles as a function of z at x = 0 averaged over all y at time Ωi0t = 21
for electrons (solid lines) and ions (dashed lines): (a) uz, (b) uy. The spatial coordinate
is z/(c/ω0

pi). (From [69])

in resistive MHD. The conclusion reached was that this rate is insensitive to the
precise physics on the electron scale that leads to violation of the frozen-in con-
dition (e.g., nongyrotropic electron pressure tensor, finite electron inertia, etc.),
thus confirming earlier results [7], [30], [74].

In those models retaining finite electron inertia, the dissipation region devel-
ops a multiscale structure based on the ion and electron inertial lengths c/ωpi

and c/ωpe [31], [59], [68], [75], [76]. Here we illustrate some of the features of
the diffusion region based on 3-D full particle simulations [69]. For the present
discussion, the y variation has been averaged out. The mass ratio is mi/me =
25. Figure 5 shows profiles of the ion and electron flow velocities uz and uy as a
function of z at x = 0. (The length scales are normalized to c/ω0

pi based on the
initial peak density n0 in the Harris distribution; the velocities are normalized to
the Alfvén speed based on B0 and n0.) Consistent with the reconnection electric
field established in the vicinity of the neutral line (see Plate 1 of [68]), the ions
and electrons drift toward the neutral line from above and below. At a distance
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Fig. 6. Current flow vectors in the xz plane at time Ωi0t = 24

|z| from the neutral line of about the local value of c/ωpi (≈ 2.2c/ω0
pi) the ions

become unmagnetized. The ion drift uiz is then reduced in magnitude, while uiy

increases in magnitude in response to the direct Ey field. The electrons remain
magnetized down to the much smaller distance of the local c/ωpe (≈ 2.5c/ω0

pe)
where they also respond to the direct Ey. The electron drift uey reaches ≈ 3.5vA.
Thus the electrons are the dominant carrier of the cross-field current in a narrow
region around the neutral line.

As the electrons and ions approach the neutral line, they are diverted and
accelerated outward by a complex parallel electric field structure (see Plate 1 of
[69]). The resulting electron and ion flow velocities are unequal, thus producing
a characteristic pattern of in-plane or Hall currents (Fig. 6). The electrons are
expelled from the neutral line in a narrow region of half width ∼ c/ωpe at
speeds several times vA. This constitutes a current in toward the neutral line for
|x| <∼ 5c/ω0

pi. This central current is fed at |x| >∼ 5c/ω0
pi by an outward electron

flow just inside the magnetic separatrix. The current away from the neutral line
is carried by electrons flowing inward outside the separatrix. The Hall currents
produce the characteristic quadrupolar “out-of-plane” By magnetic field [79],
[84] (see Plate 2 of [69]), which has a peak magnitude of about 0.3 B0.

With the advent of massively parallel computers in the past few years, it
has become possible to extend the full particle reconnection simulations to 3-
D. An issue of current research is to determine whether the laminar current
and density structures observed in the 2-D solutions are preserved in 3-D or
whether they become turbulent and break up under the influence of finite-ky

modes. Using two-fluid simulations, Rogers et al. [72] found that the structures
did break up due to the electron shear flow and lower hybrid drift instabilities.
Here we examine this question using a 3-D full particle simulation. In the present
runs the appropriate symmetry/antisymmetry conditions have been imposed at
z = 0 in order to prevent excitation of the drift kink mode [69], since it has been
determined that the linear growth rate for this mode should be extremely small
for a realistic value of the mass ratio mi/me [15]. (Note, however, that recent
work [52], [16] has demonstrated that the nonlinear evolution of the lower hybrid
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Fig. 7. Contours in the xy plane at z = 0 at time Ωi0t = 17.5 of (a) the density and
(b) the magnetic field component Bz

drift instability can lead to the growth of kink modes that is more rapid than
predicted by linear theory when mi/me > 100.) These symmetry conditions at
z = 0 would allow the growth of sausage type modes, but no such modes are
observed in the simulation. This is consistent with a recent analysis [78] that
showed that the electrostatic interaction is strongly stabilizing for this type of
mode. The x boundaries are “open” [69]: particles crossing such a boundary are
removed from the system, new thermal distributions of particles are injected, and
it is required that the perturbed magnetic field δBz ≡ 0. This latter condition
allows magnetic flux to cross the boundary, but the simulation must be stopped
once the tearing magnetic field perturbation reaches the boundary. The system
dimensions are −6.4c/ω0

pi ≤ x ≤ 6.4c/ω0
pi, −3.2c/ω0

pi ≤ y, z ≤ 3.2c/ω0
pi, the

mass ratio is mi/me = 100, and the temperature ratio is Ti/Te = 5.
Figure 7 shows contour plots of the density and magnetic field in the z = 0

plane at time Ωi0t = 17.5. The development of the neutral line at x ≈ 0 is quite
clear; the density in this region is strongly reduced and there is no indication
of any significant structure in the y direction. This result is confirmed in Fig.
8 which shows an isosurface plot of Bx/B0 = −0.1 at the same time. In the
initial Harris equilibrium this surface is located at z = 0.05c/ω0

pi. The distance
of this surface from the z = 0 midplane is inversely proportional to |∂Bx/∂z|
and is thus a measure of Jy. (Near z = 0, |∂Bx/∂z| 	 |∂Bz/∂x|.) Near z = 0,
the value of |∂Bx/∂z| has been reduced to about 75% of its initial value. This
current reduction is associated with the sharply reduced density (≈ 0.26n0)
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in and evolving with an electromagnetic field that they self-consistently produce.
The time evolution of the PIC model is achieved through a large number of steps
in each of which all particles and field components are advanced a finite step. The
PIC model reproduces all of the complex collective and nonlinear phenomena of
a collisionless plasma, and, unlike the solutions of fluid equations, the density of
particles can never become negative.

Traditionally, particle-in-cell simulations have suffered from the defects of
treating highly idealized configurations with only one or two spatial dimensions
(thus implying that the particles are actually planar sheets or line elements and
that the spatial dependence of the electromagnetic fields is modified accordingly)
and extremely simple boundary conditions such as periodicity (thus implying
that the modeled region is a small part of an infinitely repeated system). This
is beginning to change. 2-D PIC simulations are now standard, and a growing
number of 3-D simulations have been performed. This has been made possible by
the development of massively parallel computers and algorithms for parallel PIC
simulations [55]. The current generation of parallel codes typically employ on the
order of 100 processors and use a 1-D domain decomposition. Since the next few
years will bring several orders of magnitude increase in the number of available
processors, one can anticipate a tremendous increase in the size and complexity
of the problems that can be addressed with PIC simulations. This will clearly
require the development of efficient multi-dimensional domain decompositions
which are compatible with the desired boundary conditions and the requisite
field solutions.
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for Space Simulation, ed. by B. Lembège, J.W. Eastwood (Cepadues, Toulouse
1989) p. 177

72. B.N. Rogers, J.F. Drake, M.A. Shay: Geophys. Res. Lett. 27, 3157 (2000)
73. D. Schriver: ‘Simulating an Inhomogeneous Plasma System: Variable Grids and

Boundary Conditions’. In: Space Plasma Simulations, this volume (Springer-
Verlag, Heidelberg 2002)

74. M.A. Shay, J.F. Drake: Geophys. Res. Lett. 25, 3759 (1998)
75. M.A. Shay, J.F. Drake, R.E. Denton, D. Biskamp: J. Geophys. Res. 103, 9165

(1998)



24 Philip L. Pritchett

76. M.A. Shay, J.F. Drake, B.N. Rogers, R.E. Denton: J. Geophys. Res. 106, 3759
(2001)

77. I. Shinohara, H. Suzuki, M. Fujimoto, M. Hoshino: Phys. Rev. Lett. 87, 095001
(2001)
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Abstract. A three-dimensional full electromagnetic particle-in-cell (PIC ) code, TRIS-
TAN (Tridimensional Stanford) code, has been parallelized using High Performance
Fortran (HPF) as a RPM (Real Parallel Machine). In the parallelized HPF code, the
simulation domain is decomposed in one-dimension, and both the particle and field
data located in each domain that we call the sub-domain are distributed on each pro-
cessor. Both the particle and field data on a sub-domain are needed by the neighbor
sub-domains and thus communications between the sub-domains are inevitable. Our
simulation results using HPF exhibit the promising applicability of the HPF com-
munications to a large scale scientific computing such as solar wind-magnetosphere
interactions.

1 Introduction

This paper reports on parallelization of Tridimensional Stanford (TRISTAN)
code (Buneman, 1993) that is a three-dimensional electromagnetic full particle
code developed at Stanford University on a two-way PentiumPro PC cluster that
consists of 16 distributed SMPs and other commercial parallel computers like
Fujitsu VPP5000, NEC SX-6 and Hitachi SR-8000 etc. using High Performance
Fortran (HPF).

In our parallel program, the simulation domain is decomposed into the sub-
domains as shown in Fig. 1. The Particle-In-Cell (PIC) computation in TRIS-
TAN to be performed on a certain sub-domain or on a certain processor where
the sub-domain is distributed will typically require the data from their neighbor
processors to proceed the whole PIC simulations. Here we distribute the field
arrays and the particles over processors as indicated in Fig. 1. Thus the data
must be transferred between processors in each time step so as to allow PIC sim-
ulation to proceed in time. These inter-processor communications in each time
step need to be programmed in HPF constructs.

J. Büchner, C.T. Dum, M. Scholer (Eds.): LNP 615, pp. 25–53, 2003.
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Fig. 1. Coordinate of the simulation domains and domain decomposition in x.

The amount of inter-processor communications needed for a parallel program
basically depends on the algorithms and the scales of the physical problem sizes
adopted in the simulations. In PIC simulations, they are the way decomposing
the simulation domains, the sizes of the sub-domain boundaries, and the number
of the particles in a cell, respectively.

The pgHPF compiler of Portland Group Inc. aims to realize the standard
High Performance Fortran specification and can be installed on a number of
parallel machines. Executable codes produced by the pgHPF compilers for PCs
with IA-32 CPUs are unconstrained, and can be executed on any compatible
IA-32 processor-based system regardless of whether the pgHPF compilers are
installed on that system or not. From the HPF programmer’s point of view, the
differences between versions of the pgHPF runtime library have little effect on
program developments.

In parallel programming models, usually, the SPMD (Single Program Mul-
tiple Data) models using MPI (Message Passing Interface) or PVM (Parallel
Virtual Machine) are one of the most popular models. Our HPF TRISTAN code
also uses the same SPMD models. The biggest advantage of HPF is its pro-
gramming style. Once the simulation domain is decomposed and the data are
distributed to each sub-domains or over processors using simple HPF compiler
directives, other HPF programming styles are very similar to those in usual For-
trans. Of course, the biggest problem here is the performance issues comparing
with those using MPI or PVM.
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Actually, pgHPF is based on a RPM (PGI Proprietary Communications -
Real Parallel Machine) protocol. This transport mechanism was developed by
PGI to model the behavior of PVM among a homogeneous group of hosts on
a network. It offers both greater programming efficiency and performance than
PVM with fewer requirements. In this paper, to archive a similar high perfor-
mance using HPF comparing with that using MPI or PVM in the full electro-
magnetic PIC simulation, some careful optimizations of inter-processor commu-
nications are proposed.

Our code is the same as TRISTAN code except for the parallelization part,
which utilizes rigorous charge-conserving formulas and radiating boundary con-
ditions (Buneman, 1993). It was written in HPF so that the code can be run on
any parallel computers with the HPF compilers.

The parallelization part of our HPF TRISTAN code is same as (Liewer and
Decyk, 1985) and (Decyk, 1995). We separate the communication parts from
computation parts, and use both the “particle manager” and the “field manager”
to localize the inter-processor communications (Decyk, 1995) as shown in Fig. 2.
Thus the code can be easily converted to MPI or PVM version of TRISTAN
code.

The basic controlling equations of the plasmas are Newton-Lorentz equation:

mi,e
dvi,e

dt
= qi,e(E + vi,e ×B), (1)

Fig. 2. The computational cycle of the HPF TRISTAN code. The black boxes represent
HPF communications.
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where i and e corresponds to ion and electron, respectively, and Maxwell equa-
tions:

∂B

∂t
= −
×E, (2)

∂E

∂t
= c2 
×B − 1

ε0
J , (3)

Here
J =

∑
(niqivi − neqeve). (4)

The coordinate and one-dimensional domain decomposition using in the simula-
tion domain is shown in Fig. 1. For parallel benchmarking purposes, we perform
the real simulations of solar wind-magnetosphere interactions using the code. For
the simulation of solar wind-magnetosphere interactions, the following bound-
ary conditions were used for the particles (Buneman, 1993): (1) Fresh particles
representing the incoming solar wind (unmagnetized in our test run) are con-
tinuously injected across the yz plane at x = xmin with a thermal velocity plus
a bulk velocity in the +x direction; (2) Thermal solar particle flux is also in-
jected across the sides of our rectangular computation domain; (3) Escaping
particles are arrested in a buffer zone, redistributed in those grid they escaped
more uniformly by making the zone conducting in order to simulate their escape
to infinity, and finally written off. We use a simple model for the ionosphere
where both electrons and ions are reflected by the Earth dipole magnetic field.
The effects of the Earth rotation are not included. The effect of thermal expan-
sion of the solar-wind is also not included. Since the solar-wind and the Earth
dipole magnetic field are included, some load-imbalance due to this asymmetry
is expected in this HPF TRISTAN code. In Sect. 2, some basics of TRISTAN
code and the ways to run it are introduced. In Sect. 3, basics of HPF TRISTAN
data structure and array distributions are discussed. In Sects. 4 and 5, field and
particle data domain decompositions and the way of communication between
processors are discussed, respectively. In Sect. 6, unstability of the HPF com-
munication and the way that avoids the performance degradation are discussed.
In Sect. 7, benchmark and simulation results of the HPF TRISTAN code on PC
cluster are discussed. Section 8 concludes the remarks of this paper.

2 Basics of TRISTAN Code

The control equations of TRISTAN code are Maxwell and Newton-Lorentz equa-
tions only. Instead of solving Poisson equation that is solved numerically in al-
most all particle simulation codes, TRISTAN code solves only two curls, i.e.
Ampere and Faraday equations. A rigorous charge conservation method for the
current deposits is described in (Villasenor and Buneman, 1992).

The particles that are initialized as unmagnetized Maxwell distribution are
updated by the leap-frog method. Throughout the code the linear interpolation
is employed. The computational cycle of HPF TRISTAN code is displayed in
Fig. 2. The black boxes in the figure are HPF communication subroutines and
they are field and particle managers.
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2.1 Fields

TRISTAN code scales such that ε0 = 1 and hence μ0 = 1/c2. This also means
E = D. Instead of recording components of B or H, TRISTAN records bx, by, bz
of cB (alias H/c). This makes symmetry for electric field and magnetic field
(E ←→ B) in Maxwell equations. Throughout, TRISTAN uses a rectangular
cubic grid with δx = δy = δz = 1 and time discretisation with δt = 1. Before
and after moving (or pushing) the particles, B is updated in two half steps so
that it is available at the same time as E for the particle update.

In TRISTAN code, only two curls of Maxwell equations are solved:

∂B
∂t

= −∇×E, (5)

∂D
∂t

= ∇×H− J. (6)

and here
B = μ0H, (7)

D = ε0E. (8)

If we scale Maxwell equations using ε0 = 1, and substitute E = D, B = cB
into eq. (5) and (6), we obtain:

∂

∂t
B = −c∇×E, (9)

∂

∂t
E = c∇×B− J. (10)

These two equations imply the fields symmetry(E←→ B).

2.2 Magnetic Field Update

The staggered grid mesh system, known in the computational electromagnetic
community as Yee lattice (Yee, 1966), is shown in Fig. 3. It ensures that the
change of B flux through a cell surface equals the negative circulation of E
around that surface and the change of E flux through a cell surface equals the
circulation of B around that surface minus the current through it. Here B and E
are in a symmetry form except subtracting the charge flux J in Ampere equation.
Charge flux J is calculated and subtracted after the particles are moved later in
the program. Thus magnetic fields are updated as follows:

The change of B flux can be expressed as:

∂B
∂t = −c

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

ex ey ez

∣∣∣∣∣∣
= c[ i(∂ey

∂z − ∂ez

∂y )
+ j(∂ez

∂x − ∂ex

∂z )
+ k(∂ex

∂y − ∂ey

∂x )]
(11)
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In Yee lattice, ex, ey, ez, bx, by, and bz are, respectively, staggered and shifted
on 0.5 from (i, j, k) and located at the positions as follows:

ex(i, j, k)→ ex(i+ .5, j, k),
ey(i, j, k)→ ey(i, j + .5, k),
ez(i, j, k)→ ez(i, j, k + .5),

(12)

and
bx(i, j, k)→ bx(i, j + .5, k + .5),
by(i, j, k)→ by(i+ .5, j, k + .5),
bz(i, j, k)→ bz(i+ .5, j + .5, k).

(13)

In our simulation, we use integer grids. In both Eq. (12) and (13), i, j, k in the
right-hand sides correspond to Fortran array indices notations and i, j, k in the
left hand sides correspond to the real positions in the simulation domains as
shown in Fig. 3. In this report, if the values “0.5” are added to either i, j, k in
the array indices, then the array indices correspond to the real positions in the
simulation domains.

Thus the magnetic field components bx, by, bz are, respectively, updated by
the negative circulation of E around Yee lattice surface as follows:

∂
∂tbx = (bnew

x (i, j + .5, k + .5)− bold
x (i, j + .5, k + .5))/δt

= c[(ey(i, j + .5, k + 1)− ey(i, j + .5, k))/δz
−(ez(i, j + 1, k + .5)− ez(i, j, k + .5))/δy].

(14)

Fig. 3. The positions of field components in Yee lattice.
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Here δt = δz = δy = δx = 1. Thus we get the update form:

bnew
x (i, j, k) = bold

x (i, j, k)
+c[ ey(i, j, k + 1)− ey(i, j, k)− ez(i, j + 1, k) + ez(i, j, k) ]. (15)

To get the update form of by, and bz, the same procedures are as followed:

∂
∂tby = (bnew

y (i+ .5, j, k + .5)− bold
y (i+ .5, j, k + .5))/δt

= c[(ez(i+ 1, j, k + .5)− ez(i, j, k + .5))/δx
− (ex(i+ .5, j, k + 1)− ex(i+ .5, j, k))/δz ],

(16)

bnew
y (i, j, k) = bold

y (i, j, k)
+c[ ez(i+ 1, j, k)− ez(i, j, k)− ex(i, j, k + 1) + ex(i, j, k) ], (17)

∂
∂tbz = (bnew

z (i+ .5, j + .5, k)− bold
z (i+ .5, j + .5, k))/δt

= c[(ex(i+ .5, j + 1, k)− ex(i+ .5, j, k))/δy
− (ey(i+ 1, j + .5, k)− ey(i, j + .5, k))/δx],

(18)

bnew
z (i, j, k) = bold

z (i, j, k)
+c[ ex(i, j + 1, k)− ex(i, j, k)− ey(i+ 1, j, k) + ey(i, j, k)]. (19)

2.3 Electric Field Update

In Yee lattice, ex, ey, and ez are, respectively, staggered and shifted 0.5 from
(i, j, k) and located at the positions as shown in Fig. 3.

The change of E flux through a cell surface equals the circulation of B around
that surface minus the current through it. First, the electric field is updated by
the circulation of B around Yee lattice surface as follows:

∂E
∂t = c

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

bx by bz

∣∣∣∣∣∣∣∣
= c[ i(∂bz

∂y − ∂by

∂z )

+ j(∂bx

∂z − ∂bz

∂x )

+ k(∂by

∂x − ∂bx

∂y )]

(20)

Thus the electric field components ex, ey, ez are, respectively, updated by
the circulation of B around Yee lattice surface as follows:

∂
∂tex = (enew

x (i+ .5, j, k)− eold
x (i+ .5, j, k))/δt

= c[(bz(i+ .5, j + .5, k)− bz(i+ .5, j − .5, k))/δy
− (by(i+ .5, j, k + .5)− by(i+ .5, j, k − .5))/δz],

(21)

enew
x (i, j, k) = eold

x (i, j, k)
+c[ by(i, j, k − 1)− by(i, j, k)− bz(i, j − 1, k) + bz(i, j, k) ], (22)

∂
∂tey = (enew

y (i, j + .5, k)− eold
y (i, j + .5, k))/δt

= c[(bx(i, j + .5, k + .5)− bx(i, j + .5, k − .5))/δz
− (bz(i+ .5, j + .5, k)− bz(i− .5, j + .5, k))/δx],

(23)

enew
y (i, j, k) = eold

y (i, j, k)
+c[ bz(i− 1, j, k)− bz(i, j, k)− bx(i, j, k − 1) + bx(i, j, k) ], (24)
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∂
∂tez = (enew

z (i, j, k + .5)− eold
z (i, j, k + .5))/δt

= c[ (by(i+ .5, j, k + .5)− by(i− .5, j, k + .5))/δx
− (bx(i, j + .5, k + .5)− bx(i, j − .5, k + .5))/δy],

(25)

enew
z (i, j, k) = eold

z (i, j, k)
+c[ bx(i, j − 1, k)− bx(i, j, k)− by(i− 1, j, k) + by(i, j, k)]. (26)

After updating the electric field by the circulation of the magnetic field
around that Yee lattice surface, charge flux J are calculated and subtracted
after the particles are moved later in the program.

2.4 Particle Update

Newton-Lorentz equations are already in typical “update” form. The time cen-
tered finite difference version of the Newton-Lorentz particle update is:

vnew − vold =
qδt

m
< E +

1
2
(vnew + vold)×B > (27)

rnext − rpresent = δtvnew (28)

This shows that position must be leap-frogged over velocities. Hatree and
Boris found a good physical interpretation of the steps in this explicit procedure:

[1] Half an electric acceleration:

v0 ←− vold (29)

or
v0 = vold + qEδt/2m (30)

[2] Pure magnetic rotation:
v1 ←− v0 (31)

or
v1 − v0 = (v1 + v0)× qBδt/2m (32)

[3] Another half electric acceleration:

vnew ←− v1 (33)

or
vnew = v1 + qEδt/2m (34)

The Eq. (31) determining v1 from v0 is still implicit but its explicit form
follows from: (1) dotting with v1 + v0 to check that the magnetic field does not
work and that the magnitudes of v1 and v0 are the same, (2) dotting with B
to check that components along B are the same, (3) crossing with qBδ/2m and
substituting back, then to give

v1 = v0 + 2× v0 + v0 × b0

1 + b20
× b0 (35)
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2.5 Relativistic Generalization

In the code, the particle trajectory is integrated using a time-centered leap-frog
scheme. Let

u = v , γ2 = (1− u
2

c2
)−1 (36)

Here γ is denoted by relativistic factor. Newton-Lorentz Eq. (27) gives:

un+ 1
2 − un− 1

2 =
qδt

m
[En +

1
2γn

(un+ 1
2 + un− 1

2 )×Bn] (37)

rn+1 = rn + vn+ 1
2 δt = rn +

un+ 1
2 δt

γn+ 1
2

(38)

where

(γn+ 1
2 )2 = 1 + (

un+ 1
2

c
)2 (39)

2.6 Force Interpretations

In Eq. (37), E and B are interpolated from the grids to the particle positions
in Yee lattice. Throughout the code, linear interpolation is employed for subgrid
resolution. This means that there is no stringent lower limit to the sizes of such
quantities as gyroradii or Debye lengths. For quantities recorded on the integer
mesh x = i, y = j, z = k, this means interpolating the eight nearest entries by
applying weights so-called “volume” weights (Buneman, 1993). For example, the
“volume” weight for (i, j, k) is (1 − dx)(1 − dy)(1 − dz) = cx ∗ cy ∗ cz and for
(i+ 1, j + 1, k + 1) is dx ∗ dy ∗ dz.

In Yee lattice as shown in Fig. 4, the interpolated force at (x, j, k) exerted by
the electric field components ex is denoted by F(x,j,k)

ex and expressed as follows:

F(x,j,k)
ex

= ex(i, j, k) + [ex(i+ 1, j, k)− ex(i, j, k)]δx, (40)

Here
ex(i, j, k) =

1
2
{ex(i, j, k) + ex(i− 1, j, k)}, (41)

ex(i+ 1, j, k) =
1
2
{ex(i+ 1, j, k) + ex(i, j, k)}. (42)

In Yee lattice, please note that the electric field and magnetic field are staggered
as shown in the Fig. 4. Thus we obtain

2F(x,j,k)
ex = ex(i, j, k) + ex(i− 1, j, k)

+ [ ex(i+ 1, j, k)− ex(i− 1, j, k)]δx.
(43)

The interpolated forces exerted by ex at (x, j+1, k), (x, j, k+1), and (x, j+
1, k + 1) are

2F(x,j+1,k)
ex = ex(i, j + 1, k) + ex(i− 1, j + 1, k)

+ [ ex(i+ 1, j + 1, k)− ex(i− 1, j + 1, k)]δx,
(44)



34 Dongsheng Cai et al.

Fig. 4. The positions of field components in Yee lattice. A particle is located at the
point P.

2F(x,j,k+1)
ex = ex(i, j, k + 1) + ex(i− 1, j, k + 1)

+ [ ex(i+ 1, j, k + 1)− ex(i− 1, j, k + 1)]δx,
(45)

and

2F(x,j+1,k+1)
ex = ex(i, j + 1, k + 1) + ex(i− 1, j + 1, k + 1)

+ [ ex(i+ 1, j + 1, k + 1)− ex(i− 1, j + 1, k + 1)]δx.
(46)

respectively. Thus the interpolated forces exerted by ex at (x, y, k), (x, y, k+ 1),
and (x, y, z), are

F(x,y,k)
ex

= F(x,j,k)
ex

+ [F(x,j+1,k)
ex

− F(x,j,k)
ex

]δy, (47)

F(x,y,k+1)
ex

= F(x,j,k+1)
ex

+ [F(x,j+1,k+1)
ex

− F(x,j,k+1)
ex

]δy, (48)

and
F(x,y,z)

ex
= F(x,y,k)

ex
+ [F(x,y,k+1)

ex
− F(x,y,k)

ex
]δz. (49)

respectively. The interpolated forces F(x,y,z)
ey , F(x,y,z)

ez , F(x,y,z)
bx

, F(x,y,z)
by

, and

F(x,y,z)
bz

exerted by the electric field components ey, ez, the magnetic field com-
ponent bx, by, and bz can be interpolated in the same manner, respectively.

2.7 Current Deposit

As we discussed in the electric field update section, first, the change of E flux
through a cell surface (offset grid) equals the circulation of B around that surface.
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Fig. 5. The current components recorded at the point P in the Yee lattice.

Then the charge fluxes are subtracted from the B circulation later. TRISTAN
does not employ a charge density array. Only charge fluxes, i. e., the amounts of
charge flowing the faces of Yee lattice, are needed. From the Maxwell equations,
one notes that Poisson equation will always be satisfied if the charge conservation
condition:

∂ρ

∂t
= −∇ · J (50)

is satisfied. Hence the electromagnetic field can be updated from only two curl
Maxwell equations if one can enforce rigorous charge conservation numerically.
A rigorous charge conservation method for current deposit is described in detail
in (Villasenor and Buneman, 1992). In this scheme, one obtains the current
flux through every cell surface within a time step δt by counting the amount of
charge carried across the Yee lattice cell surfaces by particles as they move from
rn to rn+1 as shown in Fig. 5. In Yee lattice cell surfaces, the charge fluxes are
subtracted from each component of E field as follows:

ex(i, j, k) = ex(i+ .5, j, k)
= ex(i, j, k)− Jx ∗ cy ∗ cz,

ex(i, j + 1, k) = ex(i+ .5, j + 1, k)
= ex(i, j + 1, k)− Jx ∗ dy ∗ cz,

ex(i, j, k + 1) = ex(i+ .5, j, k + 1)
= ex(i, j, k + 1)− Jx ∗ cy ∗ dz,

ex(i, j + 1, k + 1) = ex(i+ .5, j + 1, k + 1)
= ex(i, j + 1, k + 1)− Jx ∗ dy ∗ dz,
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ey(i, j, k) = ey(i, j + .5, k)
= ey(i, j, k)− Jy ∗ cx ∗ cz,

ey(i+ 1, j, k) = ey(i+ 1, j + .5, k)
= ey(i+ 1, j, k)− Jy ∗ dx ∗ cz,

ey(i, j, k + 1) = ey(i, j + .5, k + 1)
= ey(i, j, k + 1)− Jy ∗ cx ∗ dz,

ey(i+ 1, j, k + 1) = ey(i+ 1, j + .5, k + 1)
= ey(i+ 1, j, k + 1)− Jy ∗ dx ∗ dz.

and
ez(i, j, k) = ez(i, j, k + .5)

= ez(i, j, k)− Jz ∗ cy ∗ cx,
ez(i, j + 1, k) = ez(i, j + 1, k + .5)

= ez(i, j + 1, k)− Jz ∗ dy ∗ cx,
ez(i+ 1, j, k) = ez(i+ 1, j, k + .5)

= ez(i+ 1, j, k)− Jz ∗ cy ∗ dx,
ez(i+ 1, j + 1, k) = ez(i+ 1, j + 1, k + .5)

= ez(i+ 1, j + 1, k)− Jz ∗ dy ∗ dx.

2.8 Position of Magnetopause

In original TRISTAN code, the Earth dipole field is located inside the simulation
domain. Before running simulations, the rough size of the Earth magnetosphere
should be determined and the size should be small enough to be inside the
simulation domain.

As shown in Fig. 6, the Ampere equation gives

B =
μ0

4π

∫
I0dl× r
r3

(51)

where the small vector element of the ring is dl = −eφr0dφ, the distance from
arbitrary point along the y-axis to dl is r2 = R2 + r20 − 2Rr20 cosφ, and the
ring current is I0. Here r0 is the ring radius, φ is the ring angle. From R2 =
r2 + r20 − 2rr0 cos (α+ π/2), we get:

sinα =
R cosφ− r0

r
. (52)

Thus the Bz at (0, R, 0) is:

Bz = −μ0I0r0
4π

∫
R cosφ− r0

r3
dφ (53)

when R	 r0 is assumed, it can be

Bz(magnetopause) ∼ μ0I0r
2
0

2R3 (54)

The potential energy density of the Earth magnetic field in magnetopause is:

Wmagnetic = B2/2μ0 ∼ B2
z/2μ0 ∼ μ0I

2
0r

4
0

8R6 . (55)
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Fig. 6. The ring current to generate the dipole field of the Earth at (0, R, 0).

The kinetic energy density of solar wind flow is:

Wsolar wind =
1
2
ρsolar windV

2
solar wind ∼

1
2
(miDi +meDe)V 2

solar wind. (56)

where Di, De are the number density of ions and electron in solar wind respec-
tively. The position of the magnetopause, RMP , located where the two energy
densities are equal to each other. We obtain it from Eq. (55) and Eq. (56):

R6
MP ∼

μ0I
2
0r

4
0

4(miDi +meDe)V 2
solar wind

(57)

In TRISTAN code, the Earth dipole filed is ramped-up linearly at an initial
stage of the simulation. The half dipole field ramp-up time is −o2

o3 = n, and
the final ring current charge density is ofinal = −o3× n(n+ 1)(2n+ 1)/3. The
ratio -o2/o3 should be an exact integer n. The number of time steps taken for
the build-up is 2n. The final value of “o” will be −o3n(n+ 1)(2n+ 1)/3 in the
simulation. Using Eq. (57) and the final value of “o”, the rough location of the
magnetopause can be estimated.

2.9 Field Densities

It is most important to realize that the three components of each field vector
have not been recorded at the same places in Yee lattice. To get the electric
and magnetic field components at location (i, j, k), one must form the following
averages;

ex(i, j, k) =
1
2
{ex(i− 1, j, k) + ex(i, j, k)}, (58)
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ey(i, j, k) =
1
2
{ey(i, j − 1, k) + ey(i, j, k)}, (59)

ez(i, j, k) =
1
2
{ez(i, j, k − 1) + ez(i, j, k)}, (60)

bx(i, j, k) = 1
2{ 1

2 [ bx(i, j, k) + bx(i, j, k − 1) ]
+ 1

2 [ bx(i, j − 1, k) + bx(i, j − 1, k − 1) ]}, (61)

by(i, j, k) = 1
2{ 1

2 [ by(i, j, k) + by(i− 1, j, k) ]
+ 1

2 [ by(i, j, k − 1) + by(i− 1, j, k − 1) ]}, (62)

and
bz(i, j, k) = 1

2{ 1
2 [ bz(i, j, k) + bz(i, j − 1, k) ]

+ 1
2 [ bz(i− 1, j, k) + bz(i− 1, j − 1, k) ]}. (63)

2.10 Formulae and Normalization

TRISTAN code uses scales such that ε0 = 1 and hence μ0 = 1/c2 (means E = D).
TRISTAN also uses scales such that time step δt = 1, grid sizes δx = δy = δz =
1, electron charge to mass ratio qe/me = −1, electron mass me = 1. Thus the
normalized ion and electron cyclotron frequencies are:

Ωe =
zeB

me
=
B

me
= B, (64)

Ωi =
zeB

mi
=
B

mi
= B × rmass. (65)

respectively. Here the mass ration rmass = me/mi. The normalized ion and
electron gyroradii are:

ρe =
meve
zeB

=
meve
B

=
ve
B
, (66)

ρi =
mivi
zeB

=
mivi
B

=
vi

rmassB
. (67)

respectively. The normalized electron and ion plasma frequencies are:

ωpe =

√
nez2e2

ε0me
=
√
ne

me
=
√
ne, (68)

ωpi =

√
niz2e2

ε0mi
=
√
ni

mi
=
√
nirmass. (69)

respectively. The normalized Alfven wave speed is:

VA =

√
B2

0

μ0ρm
= c

√
B2

0

ρm
. (70)
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where ρm = neme +nimi = me(ne + ni

rmass ) is the mass density. The normalized
sound speed is:
Cs =

√
γeTe+γiTi

mi
=
√

γp0
ρ0
∼
√

γT
mi

∼
√
Te

mi
=
√

rmass Te

me
=
√

rmass Te. (71)

The normalized Debye length is:

λDe =
√
ε0Te

nee2
=
√
Te

ne
. (72)

In TRISTAN code, users have to specify the solar wind velocity vdrft, the
thermal ion velocity vth2i, the thermal electron velocity vth2e, the particle den-
sity Dpair, the half dipole field ramp-up time o2

o3 = N , and the final ring current
charge density:

ofinal = −o3×N(N + 1)(2N + 1)/3. (73)

From Eqs. (68), (69) and (72), please note that the plasma frequency is pro-
portional to ne

1
2 and the Debye length is proportional to ne

− 1
2 . Thus, fixing all

input parameters except the particle density, if we change the particle density in
the simulation to reduce the statistical noises or fluctuations, all physical quan-
tities will vary and the physical meanings of simulation results will change at the
same time. Varying the value of the particle density, we have to adjust all other
physical input parameters simultaneously to keep the physical problems fixed.

2.11 Stabilities and Heating Conditions

Solving Maxwell equations by the centered difference scheme in space and by
leap-frog method in time, the spatial grid δx, δy, δz and the time step δt should
satisfy the following inequality, which is called Courant condition,

δx, δy, δz > c δt (74)

where c is the light speed and δx, δy, δz is the grid size. The condition is easily
derived from the numerical dispersion relation of the light mode.

In TRISTAN code, if we consider the real physical system size of the Earth
magnetosphere, it is definitely impossible to use the grid size equal to or more
than one Debye length even if we use a very powerful parallel computer. You
can imagine that the typical Debye length in magnetopause is roughly an order
of 10 m and how many grids will be needed to simulate the whole magneto-
sphere. One trade-off to solve this problem is to reduce the grid size less than
one Debye length. However, we have to carefully avoid nonphysical instabilities
caused by the grid or numerical grid heating (Birdsall and Langdon, 1985). For
a Maxwellian velocity distribution with no drift, a rough rule of thumb is that
nonphysical instability has ignorable growth for λDe/δx >

1
π ∼ 0.3 for linear
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weighting. However, when λDe ∼ 0.1δx, the lowest and strongest aliases inter-
act with the steep sides of a Maxwellian velocity distribution and there is little
Landau damping. The result is strong numerical instability. If λDe/δx decreases
further the instability goes away, as it should since a cold stationary plasma
is inactive. Therefore, when the Debye length λDe is determined, a very rough
criteria to avoid nonphysical instability is to avoid the range:

o(10−1) ≤ λDe

δx
≤ 0.3.

Of course, there are many other types of nonphysical instabilities and we have
to check them carefully in the simulation.

3 Arrays in Original TRISTAN Code

The motivation of TRISTAN, a fully three-dimensional (3D) electromagnetic
(EM) particle-in-cell (PIC) code written by Oscar Buneman and other collab-
orators in Stanford University, is to develop a general particle-in-cell code for
space plasma simulations (Buneman, 1993). In this section, we only discuss the
data structure and the data distribution over processors on the HPF TRISTAN
code. For the detail physics of the PIC code in general, please refer to, for ex-
amples, (Birdsall and Langdon, 1985) and (Walker, 1991).

The data structure of TRISTAN code consists of two primitive data types.
The first one is the particle data as follows:

x(mp), y(mp), z(mp), u(mp), v(mp), w(mp),

where mp= total number of particles, the positions and velocities of ions and
electrons are recorded at:

x(1 : mh), y(1 : mh), z(1 : mh),

u(1 : mh), v(1 : mh), w(1 : mh),

and
x(mh+ 1 : mp), y(mh+ 1 : mp), z(mh+ 1 : mp),

u(mh+ 1 : mp), v(mh+ 1 : mp), w(mh+ 1 : mp).

respectively, wheremh = mp/2. The second one is the grided field data expressed
as the triple-indexed arrays of EM (ElectroMagnetic) fields as follows:

ex(i, j, k), ey(i, j, k), ez(i, j, k),

and
bx(i, j, k), by(i, j, k), bz(i, j, k).

The original TRISTAN code uses “COMMON” block clause to save and trans-
fer fields data between subroutines in the MOVER (push particles) and DE-
POSIT (deposit current data to the field grids) subroutine calls. Meanwhile
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in the subroutines that processes the surfaces and edges of the grid data, the
filed data are transferred by dummy arrays in the original code. In both of these
subroutines, the field arrays are treated as single-indexed. On the other hand,
triple-indexed field arrays are employed in the field solver subroutines. In the
code, single-indexed arrays are converted automatically to the triple-indexed
arrays when they passed over two subroutines.

Converting a serial Fortran program to a HPF program, we have to stress
two points that are very important for rewriting TRISTAN in HPF: [1] The
“COMMON” statement is restricted as suggested by pgHPF user guide and
there they indicated ‘We strongly recommended that programmers writing new
F90 code use features like “MODULE”... to avoid the use of “COMMON”...’
(Koelbel, et al., 1994, Foster, 1995), in case of data overlapping, and substituted
it by “MODULE” block; [2] To control the communications, all the arrays are
treated as fixed indexes throughout the whole program. We control the commu-
nication parts using both the “field manager” and “particle manager” (Decyk,
1995).

4 Field Data Domain Decompositions

The field data are decomposed over sub-domains of that number is equal to
the number of the processors used in the simulation as indicated in Fig. 1.
In processing the current deposition that is so-called the scatter part of the
computations, to avoid large transients or variations of currents, TRISTAN uses
a “smoother” that has 27 different weights, smoothing the current deposition.
In DEPOSIT subroutine the smoothing is performed as follows:

ey(i+ smx+ 1, j + smy, k + smz + 1, Np) =
ey(i+ smx+ 1, j + smy, k + smz + 1, Np)

−sv ∗ dz ∗ dx− ss
(75)

where smx = −1 : 1, smy = −1 : 1, smz = −1 : 1,sv = sm(smx, smy, smz,Np)∗
qv and ss = sm(amx, amy, amz,Np) ∗ delt. For details, see p. 73 and p. 321 of
Lecture note by Buneman (1993). (Note that one dimensional array for ex, ey,
ez is used.) Therefore, the current deposition of one particle will be related to
three grids in each dimension, where one of them are at the backward grid and
another at the forward grids in each dimension.

In the “MODULE” block, the field arrays are written in HPF directives as
follows:

REAL,DIMENSION(nx, j, k,Np) :: ex, ey, ez

REAL,DIMENSION(nx, j, k,Np) :: bx, by, bz

where Np is the number of processor, nx = i/Np + 3 (here assuming i/Np
is not necessarily equal to be integer exactly) keeping one guard cell in the
left (backward) and right (forward) sides of the sub-domains in the domain-
decomposition direction (i.e., in the solar-magnetotail direction). Here the indices
i, j and k correspond to the numbers of field grids in x, y and z directions,
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respectively. Using the HPF directive “DISTRIBUTE”, we, respectively, map
the sub-domains to each processor on a distributed parallel computer:

DISTRIBUTE(*,*,*,BLOCK) ONTO Np:: ex,ey,ez

DISTRIBUTE(*,*,*,BLOCK) ONTO Np:: bx,by,bz

In order to separate the communication parts from the computation parts, each
sub-domain keeps extra cells, the so-called guard or ghost cells, that store the
field data information in the first and last grids of that sub-domain in the decom-
position direction. Fig. 1 illustrates this concept of the data mapping over the
sub-domains or processors. Here the communications are required after updating
the field data every time step. In the field manager (Decyk, 1995), the data sent
to the neighbor processors are packed in the working arrays: Cex(1, j, k,Np),
Cey(1, j, k,Np), and Cez(1, j, k,Np), before they are sent to the neighbor sub-
domains. Thus the field data communications are performed by the pgHPF
CSHIFT construct after the data are packed in the working arrays. The fol-
lowings are the related parts of the HPF programs in the field manager (Decyk,
1995):

Cex(1,:,:,:)=ex(2,:,:,:)

Cex=CSHIFT(Cex,+1,4)

ex(nx-1,:,:,:)=Cex(1,:,:,:)

...

5 Particle Data Domain Decompositions

The particle data can be written in HPF directives as follows:

REAL,DIMENSION(m,Np) :: xe, ye, ze, xi, yi, zi

REAL,DIMENSION(m,Np) :: ue, ve, we, ui, vi, wi

where i and e, respectively, stand for ion and electron, the numberm is the array
size in each sub-domain. To ensure that the enough space are reserved to store
the particle data due to the load-imbalance, m must be 10-30 % larger than the
average number of particles. The number Np is the number of processors, and
is the index used in the HPF “DISTRIBUTE” directive. As the particles move
in time in the simulations, the physical position of some particles may cross the
sub-domain boundaries, and move to the neighbor sub-domains. When a par-
ticle moves from one sub-domain to another, the data of the particle left the
sub-domain must be sent to the appropriate neighbor processor at every time
step. Before updating and sending the particle data, we have to sort the parti-
cles that should be sent to another sub-domain, and pack them in the working
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Fig. 7. Diagram of particle array decompositions and communications, with processor
number Np = 4, grid number in decomposition direction=12.

arrays: CRi(:, Np), CLi(:, Np), CRe(:, Np), and CLe(:, Np). The number of the
ions and electrons sent in right and left are denoted by the arrays ionspsR(Np),
ionspsL(Np), lecspsR(Np), and lecspsL(Np), respectively. In our HPF TRIS-
TAN code, we send both the packed arrays and their particles number arrays to
the neighbor sub-domains as follows:

CRi=CSHIFT(CRi, -1,2)

ionspsR=CSHIFT(ionspsR, -1)

...

Fig. 7 shows the example of the particle data distributions and communications.
After both the particle numbers and the packed working arrays are sent and re-
ceived by each appropriate processors, the received particles are sorted and put
into the appropriate part of the particle arrays in that sub-domain. The com-
munications and sorting of these particles are performed in the particle manager
(Decyk, 1995) as shown in Fig. 2.

6 Programming Comments on HPF Communications
in PC Cluster

For benchmark purpose of HPF TRISTAN, a dual PentiumPro PC cluster con-
sists of 16 PCs and each PC have dual 200MHz PentinumPros with 128MB EDD
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DIMM memories. The PCs in the PC cluster system are hooked through 100
Base-T ethernet with 100 Base-T switching Hub. Redhat Linux version 4.1 was
used as their operating systems. The pgHPF compiler version 1.7 was installed
for HPF computations.

One of the most difficult problems in our HPF TRISTAN code is the commu-
nication programming, especially, the determination of the buffer sizes which is
used to pack the data sent to the neighbor processors. Of course, we can define a
buffer size large enough to send the particle or grid data to neighbor processors
at one time. However, as shown in Fig. 8, our experience shows that when the
buffer sizes become larger than some critical values, in this case 1456 bytes in
our PC cluster system, the communication suddenly becomes unstable, and the
communication times suddenly jump up to 5 to 8 times larger than those less
than the critical value 1456 bytes. As indicated in the Fig. 8, the communication
times when the buffer size go beyond 1456 bytes are not uniquely determined and
rather indeterministic. In order to avoid the sudden communication slow-down,
we have to carefully choose the buffer size. We have to split the particles or grids
data into smaller pieces of buffers, pack the smaller data, and send the data
to the neighbor processors one by one. Thus we can avoid the large slow-down
of the simulations in this system due to the unstable HPF communications. In
our HPF TRISTAN code, the buffer sizes can be varied and can be set without
modifying the program. We can first evaluate the best buffer size and run the
simulations. The best buffer size can be chosen as indicated in Fig. 8. For ex-

Fig. 8. Buffer sizes and CSHIFT communication times in HPF.
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amples, in this figure, the best buffer sizes can be chosen between 640 to 1400
bytes.

The reasons for performance degradation in communications with this longer
packets than 1456 bytes are not yet investigated in detail. One possibility of this
degradation is due to MTU of the ethernet. MTU is the Maximum Transmission
Unit that IP is allowed to use for a particular interface. If your MTU is set
too big, in this case beyond ∼1456 bytes your packets must be fragmented, or
broken up, by a switching hub along the path to the other PCs. This may result
in a drastic decrease in throughput. However, we have not identified the source
of this communication degradation. We would like to leave this investigation to
our future research.

7 Benchmark and Simulation Results

In Table 1, the parameter εeff−grid is defined as:

εeff−grid =
Numtotal grid −Numtotal guard cell

Numtotal grid
.

where Numtotal grid is the total grid number in decomposition direction, and
Numtotal guard cell is the total number of guard cell. Table 1 shows the total
times, speedups and parallel efficiency vs the number of processors. The total

Table 1. Benchmark resluts with time step=100, particle number =1200,000, and grid
number =185 × 65 × 65.

Procs Time(s) speedup Sp efficiency ε(%) εeff−grid(%)
1 4836 1.0 100. 100
2 3706 1.3 65.2 96.9
3 2416 2.0 66.7 95.4
4 1769 2.7 68.4 93.9
5 1457 3.3 66.3 92.5
6 1195 4.0 67.4 91.1
7 1034 4.7 66.8 89.8
8 937.4 5.2 64.5 88.5
9 881.9 5.5 60.9 87.2
10 762.7 6.3 63.4 86.0
11 713.0 6.8 61.7 84.9
12 652.0 7.4 61.8 83.7
13 616.8 7.8 60.3 82.6
14 575.9 8.4 60.0 81.5
15 572.5 8.4 58.3 80.4
16 516.4 9.4 58.5 79.4
17 497.2 9.7 57.2 78.4
18 470.5 10.3 57.1 77.4
19 453.5 10.7 56.1 76.4
20 426.6 11.3 56.7 75.5
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Fig. 9. Speed up vs processor number.

computation time of single processor was measured by the original version of
TRISTAN code compiled by pgf77 compiler with the optimization level -O2
option. Figure 9 shows the speed up vs processor number.

With fixing the problem size and increasing the processor number, the grid
number in one sub-domain is reduced gradually. For example, 40 extra ghost grid
cells in total must be added to each sub-domains in decomposition direction
or in x for 20 processors. It is about 25 percents of the total grid number in
decomposition direction in this case. Thus the communication overhead become
insignificant comparing with the total PIC computation time as we increase the
number of the processors. The increase of the communication overhead reduces
the parallel efficiency in the table. If the communication overhead is insignificant,
it is very hard to improve the parallel efficiency of the code without varying the
problem size. However, even the most advanced parallel computer nowadays, it
is not so easy to increase the problem sizes as we increase the number of the
processors due to the large data sizes we have to store in each simulation run.
Thus the optimal parallel efficiency of the scalable relation between the problem
sizes and the number of processors are difficult to be measured in our simulation.
However, Fig. 9 shows the high linearity of our HPF TRISTAN code and the
code scales well. In addition, with the HPF compiler overhead and the load-
imbalance overhead due to the Earth dipole field, the parallel efficiency around
60-65 % is affordable in this type of large scale simulations.

PIC simulations exploring the solar wind-magnetosphere interaction with
this HPF code were accomplished on the PentiumPro PC cluster (Cai and Lu,
1999). After measuring the communication efficiencies via different processor
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Table 2. Simulation parameters of case 1.

grids 205x165x165

initial ion-electron pairs 500,000,000

Light speed 0.5

ε0 1.0

mi / me 16

qe / me 1.0

Δx 1

Δt 1

electron temperature Te 0.004

ions temperature Ti 0.00025

solar-wind speed 0.25

IMF no

ωpe 0.2

λD/Δx 0.4

plasma parameters g∼2.8

numbers, the CFSHIFT function and its communication have been optimized
by splitting a large data into many small size ones. So that a high performance
communication is achieved. We also have run the code on Hitachi supercomputer
SR2201 and Fujitsu VPP 5000 etc..

In case 1, we use a 205 by 165 by 165 grid and 50,000,000 plasma particles.
The other parameters are listed in table 2: (1) the center of the loop current is
located at (100Δ, 82.5Δ, 82.5Δ); (2) the solar-wind drift velocity is 0.5c, where
c is the light speed; (3) mi/me = 16; (4) use 8 particles per grid cell in aver-
age; (5) Te = 0.004 and Ti = 0.00025; (6) the plasma parameter is about 2.8.
Figure 10 (a) and (b) show the ion density profiles on the XZ and XY planes at
time step 1500 respectively. It is clear that the complete configuration of mag-
netosphere, including bow shocks, magnetopause, magnetosheath, magnetotail,
plasma sheet, and polar cusp are generated. In this case, more basic kinetic be-
haviors of space plasma in the magnetosphere have been investigated including a
time-varying IMF. We use a northward IMF (Bz = 0.01) for an initial condition.
At time step 500, the IMF is switched into southward (Bz = −0.02) at the sun-
ward boundary of the domain. It is shown that after the arrival of a southwad
IMF, due to the reconnection at dayside magnetopause the convection pattern
across the entire polar cap begins to change in a few minutes. In contrast, the
response of the equatorward motion of the open-closed field-line boundary that
depends on the local time is delayed about 20 minutes relative to the onset of the
reconnection at the dayside magnetopause. This time delay is considered as the



48 Dongsheng Cai et al.

Fig. 10. The ion density profiles at (a) XZ and (b) XY planes of case 1.

Table 3. Simulation parameters of case 2.

grids 185x125x125
initial ion-electron pairs 24,000,000

Light speed 0.5
ε0 1.0

mi/me 16
qe/me 1.0

Δx 1
Δt 1

electron temperature Te 0.4
ions temperature Ti 0.1

solar wind speed 0.25
IMF yes
ωpe 0.2

λD/Δx 0.4
plasma parameter g∼3

time required to convect the newly merged flux from the dayside magnetopause
to the nightside inner magnetosphere.

In case 2, we use a 185 by 125 by 125 grid and 24,000,000 total particles.
The other parameters are list in Table 3. It is shown in Fig. 11 that when the
southward IMF arrived, the magnetic field of magnetosphere is modified. Some
structures are formed. The nature of these structures is still under investigation.

We investigate the relationship between the IMF and the particle flux in
polar region in case 3, in which we used a 85 by 105 by 105 grid and 3,500,000
paired particles. The other parameters are listed in Table 4. It is assumed that
the cusp region is located at 25 < x < 35, 45 < y < 60, 56 < z < 60. The IMF
is initially zero, and switch on three times, i.e., Bz = −0.01 during time step
100-120, Bz = −0.02 during time step 600-620 and Bz = −0.005 during time
step 900-920. The ion density profile in cusp region via time step was shown
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Fig. 11. Magnetic field lines at time step 1540 of case 2.

Table 4. Simulation parameters of case 3.

grids 85x105x105
initial ion-electron pairs 3,500,000

light speed 0.5
ε0 1.0

mi/me 16
qe/me 0.5

Δx 1
Δt 1

ion temperature Ti 5.9 × 10−6

electron temperature Te 4.8 × 10−5

solar wind speed 0.25
IMF yes
ωpe 0.088

λD/Δx 0.93
plasma parameter g∼3.2

in Fig. 12. The mean ion velocities in cusp region via time step was shown in
Fig. 13. The total thermal energy in cusp region via time step was shown in
Fig. 14. Total particle energy in cusp region via time step was shown in Fig. 15.

It is clearly shown that the first and second switch-on of the southward IMF
can cause particle flowing into cusp regions after some time steps. Many particles
are entered into cusp regions. It seems that not all southward IMFs can cause
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Fig. 12. The ions density profile via time step in the cusp region of case 3.

Fig. 13. Mean ion velocity and IMF via time step in cusp region of case 3.

the particle-entry into cusp regions. Only those IMFs that are strong enough
can cause particle-entry into cusp regions.

The figures show that in the first two IMFs switch-on, the total particle
number and the mean ion velocities decreased from the local maximum to the
local minimum after the southward IMF switch-on. The intense southward IMF
could push the particles into cusp region to magnetotail-ward directly. This may
be related to substorm or magnetic reconnection.
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Fig. 14. Total thermal kinetic energy and IMF via time step in cusp region of case 3.

Fig. 15. Total particle energy and IMF via time step in cusp region of case 3.

8 Concluding Remarks

In the present paper, we have successfully parallelized the three-dimensional full
electromagnetic and full particle code using HPF. The code is originally the
same as the TRISTAN code and the code is for the space plasma simulations.
As shown in Fig. 9 and Table 1, fixing the problem size, our HPF TRISTAN
code has a high linearity and scales well. However, our HPF code introduces
about 70% overhead and the reason for this overhead is not yet investigated. We
have also parallelized the three-dimensional skeleton-PIC code introduced by
V. K. Decyk (Decyk, 1995) in the same parallel algorithm (Liewer and Decyk,
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1985, Decyk, 1995) using HPF. The HPF three-dimensional skeleton-PIC code
introduces about 20% overheads (Cai, et al., 1999). One possibility to explain the
larger overheads in our HPF TRISTAN code over the HPF skeleton-PIC code is
that there are more complicated data structures in HPF TRISTAN code than
those in the skeleton-PIC code. Our PCs in the cluster have no enough memory
and this may degrade the performance of the PCs. Another possibility is the
load-imbalance originated in the TRISTAN code as we discussed previously. Our
HPF TRISTAN code has the Earth dipole filed which generates and simulates
the Earth magnetosphere in one of sub-domains, and this may cause a large
load-imbalance. We would like to leave the detailed investigation to our future
work.

The parallelization algorithm we used in our HPF TRISTAN code is basically
the same as (Liewer and Decyk, 1985) and (Decyk, 1995). We separate the
communication parts from the computation parts. Thus the code can easily be
converted to MPI or PVM code by replacing the HPF “CSHIFT” constructs to
appropriate message passing interfaces. Our experiences show that the utilization
of HPF “FORALL” or “DO INDEPENDENT” constructs in the data-parallel
manner without separating the communication parts from the computation parts
results in almost no gain of speedups or very poor speedups.

We have also compared the HPF skeleton-PIC code with the MPI or PVM
skeleton-PIC code. The HPF code degradation of the total CPU time over the
MPI or PVM code is only 10-15 % (Cai, et al., 1999) in this case. Thus we expect
that we should be able to enjoy the easier HPF programming with a very small
performance degradation even in the more complicate codes like the TRISTAN
code.
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Full Particle Electromagnetic Simulation
of Collisionless Shocks

Bertrand Lembège

CETP-CNRS-UVSQ, 10-12 Av. de l’Europe, 78140 VELIZY, France

Abstract. This tutorial-style review is mainly dedicated to the different strategies
and constraints used for simulating and analysing the dynamics of collisionless shocks
with full particle electromagnetic codes. The relationship between macroscopic and
microscopic processes inherent to the shock dynamics and the associated numerical
constraints are explained. Different initial methods are commonly used for exciting a
shock which are summarized and compared in terms of computing efficiency. Boundary
conditions and associated numerical “tricks” are also detailed. Advantages and limita-
tions of using full particle codes for simulating collisionless shocks are discussed. These
limitations are mainly expressed in terms of compromise by using irrealistic plasma
parameters values or/and appropriate magnetic field configurations. As a consequence,
such a compromise requires to validate the simulation results obtained, before being
compared with real experimental results; complementary validation approaches are
proposed. In the post-processing stage, different strategies (complementary to the full
particle code but still based on particle analysis) are necessary when the structures
and/or phenomena inherent to the shock dynamics become too intricated: they con-
cern (i) various approaches allowing to analyse the underlying basic mechanisms, and
(ii) the strategies “mimicing” real space experiments.

1 Introduction

Different strategies can be followed for analysing a collisionless shock with full
particle mono and/or multi-dimensional codes. These are detailed in the present
paper including a short review of main characteristics of collisionless shocks
(Sect. 2), the numerical constraints and initial conditions for simulating shock
(Sect. 3), the methods for validating numerical simulation results of shocks
(Sect. 4), the advantages of full particle simulations for analysing collisionless
shocks (Sect. 5), and the analysis strategies used in the post processing stage
(Sect. 6). In contrast, main results obtained with such simulations will not be
presented herein but can be found in already published material (references are
provided in the text). Some results will be only quoted herein (but not developed)
when necessary, i.e. in order to illustrate a few aspects of these simulations.

Thanks to the increasing improvement of super computers, full particle sim-
ulations have proven to be quite helpful for analysing in detail the dynamics
of collisionless shocks. The main characteristics of such codes can be shortly
summarized as follows:

– One resolves the full set of Poisson and Maxwell’s equations without any
approximation. Two approaches are commonly used for resolving this equation’s
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set, more precisely the space derivatives: (i) the finite difference approach and
(ii) the use of FFT’s (Fast Fourier Transform). Approach (ii) presents two ad-
vantages: first, FFT’s are highly optimized in supercomputers libraries; second,
FFT’s allow to separate all fields components into two groups: the longitudi-
nal electrostatic component El (solution of Poisson’s equation) and the trans-
verse electromagnetic components Et and Bt solutions of Maxwell’s equations
(so called “fields pusher”). Such a separation is quite helpful in the post process-
ing stage necessary for the data analysis, as will be outlined in this presentation.

– Both ions and electrons populations are treated as individual finite-size
particles and suffer the effects of all fields via the Lorentz force, so called “par-
ticle pusher”, which is applied to each particle. Because of the large number of
particles commonly used, the particle pusher represents the most expensive part
of the calculations on which most efforts of optimization needs to be performed
(in terms of “vectorization” or of “parallelism”). Relativistic effects may be in-
cluded in this force via the use of particle momentum. Each particle has three
velocity components (vx, vy, vz), but may have 1, 2 or 3 space coordinates (x,
y, z) according to the dimension of the code of concern.

2 Main Features of Collisionless Shocks: A Short Review

For the purpose of clarity, we will remind shortly the basic features of a shock in
order to establish more clearly the link between the internal physics of the shock
([39], [18]) and the specific numerical criteria necessary to shock simulations.
More precisely, we will focus our attention on fast magnetosonic collisionless
shocks. Corresponding full particle simulations of slow mode shocks will not be
discussed herein, since these have been analysed until now with MHD and hybrid
simulations mainly.

In a simplified and short approach, the shock can be expressed as the re-
sult of a compromise between nonlinear effects balanced both by dispersion and
dissipative effects (Fig. 1).

2.1 Nonlinear Effects

Assume a small amplitude sinusoidal wave with a given wavelength λ. In the
linear regime, its velocity only depends on the wavefrequency ω and wavelength
via the relationship v = ω/k; the sinusoidal wave shape stays unchanged. As the
amplitude increases, it reaches an amplitude threshold above which this relation-
ship is not valid anymore. Then, the amplitude is so large that nonlinear effects
become important and the velocity now depends on the local wave amplitude. In
other words, one point of a high amplitude location will propagate with velocity
larger than another fluid element with lower amplitude (Fig. 1a). As a result,
the wave shape is now deformed with respect to the original sinusoidal pattern
which is destroyed; this means that higher k-mode are excited (i.e. waves with
smaller wavelengths are locally generated). This wave distortion is also called
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Fig. 1. Sketch illustrating the shock as the result of a compromise between three effects,
namely the nonlinear effects (a) balanced by two others namely the dispersion effects
(b) and the dissipation effects (c); “US” and “DS” define respectively the upstream
and downstream regions.

“wave steepening” or wave “overtaking”. This steepening means accessibility
to smaller and smaller spatial scales. However, this steepening cannot continue
forever; indeed, it reaches some scales over which other processes begin to be
quite efficient and start to counterbalance this steepening. How is this balance
established? Two complementary effects contribute.

2.2 Dispersion Effects

When higher k-modes waves are generated by the steepening (i.e. are locally
accumulated and start forming a shock front-like pattern), dispersion effects
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allow to radiate these waves from the front itself. Each wave propagates with
its own velocity. In other words, the shock front is acting as an “antenna”.
Within a fluid approach, this radiation is supported by the Hall-current term.
Figure 1b illustrates the correspondence between the dispersion curve properties
and the shape of the steepened magnetosonic wave (i.e. shock front). For a
strictly perpendicular magnetosonic wave, the dispersion curve is purely concave
and higher k-modes do have lower phase and group velocities; the waves can only
radiate downstream from the front. There is no upstream precursor. However,
for an oblique propagating magnetosonic wave, the dispersion curve exhibits
a convex shape from the origin (i.e. for lower k-modes) and a concave shape
(for higher k-modes). The convex part will allow some waves to propagate with
higher phase and group velocities and to escape from the front upstream. This
will give birth to the upstream precursor. In contrast, the concave part will still
contribute to the downstream evacuation.

2.3 Dissipation Effects

The analysis of these effects is the first difficult question in shocks physics since
quite different source mechanisms can contribute; the difficulty consists in iden-
tifying these mechanisms. In short, two classes of dissipation processes may be
defined: the resistive and the viscous effects. The relative contribution of these ef-
fects to the overall shock dynamics strongly varies according to the Mach regime,
the propagation angle of the shock and the plasma beta number. Such mecha-
nisms have been largely developed in previous review papers and text books and
will not be detailed herein. However, it is necessary to focus on the basic pro-
cesses contributing to these effects in order to identify which numerical criteria
have to be satisfied in the simulations of collisionless shocks. We can identify
two main particle interactions processes:

a) Macroscopic processes: these concern the interaction of particles
with macroscopic E and B fields at the shock front. The origin of the electrostatic
field E is due to the fact that ions and electrons do have quite different masses.
In a simple approach, the electrons can be considered as strongly magnetized in
contrast to ions which are partially unmagnetized when penetrating the shock
front. As a consequence, some space charge effects (and associated electrostatic
field E) build up at this front. The sign of the E field is appropriate for braking
the ions and accelerating electrons through the front; in other words, the front
plays the role of a “filter”. For a strictly perpendicular front, all electrons are
directly transmitted; in contrast, only ions which have enough energy succeed
to pass through the front, while a certain percentage (depending on the Mach
regime) is reflected. However, for an oblique propagating shock, the situation
strongly differs since each population (electrons and ions) divides into two parts
at the shock encounter: one part is reflected, the other is directly transmitted.
The role of “filter” is drastically changed. In a deeper approach, the situation
is more tricky and requires a more refined analysis which is out of scope of the
present analysis.
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b) Microscopic processes (Fig. 2): a certain number of instabilities
may coexist at and in the near vicinity of the shock front. These represent
sources of free energy sources; during their relaxation times, this free energy is
redistributed in a self consistent way via waves-particles interactions. For the
purpose of clarity, these instabilities can be gathered into three main groups:

– Current-driven instabilities. These instabilities may be due
to field-aligned currents or cross-field currents. The main processes are the fol-
lowing. In short, the shock front corresponds to a large jump in magnetic field
which is supported by an important diamagnetic cross-field current. This cur-
rent mainly carried by electrons (which suffer different types of drifts) is large
enough to trigger several kinds of instabilities (depending on propagation an-
gle, local plasma parameter, etc..). The same holds for field-aligned currents.
Then, electrons and ions are interacting with such instabilities which contribute
to their local acceleration and heating (in addition to those brought by direct
macroscopic processes). In summary, the current energy is dissipated by a trans-
fer to particles via these instabilities; this represents the physical background
of anomalous resistive processes. One advantage of full particle simulation is to
include such processes by a self-consistent way as explained in Sect. 3.2.

– Anisotropy-driven instabilities. When electrons and/or ions
interact with macroscopic fields (as mentioned above), these acquire different
energy gains in directions perpendicular and parallel to the local magnetic field.
This gives birth to noticeable temperature anisotropies which are large enough
to trigger some instabilities. The particles interact back with these instabilities
which relax in time and in space over different scales at and around the shock
front as long as the anisotropy stays above a certain threshold. Then, it is im-
portant to prepare appropriate simulation conditions if one wishes to include by
a self-consistent way such instabilities in the simulation.

– Non-equilibrium distribution instabilities. These instabilities
represent a second consequence of the interaction of particles with macroscopic
fields at the shock front. For ions, typical examples are: formation of ion ring
distribution which characterizes the portion of incoming ions reflected at the
front (quasi-perpendicular shock), or formation of field-aligned ion beams for ions
which are reflected in quasi-parallel shocks (ion foreshock). For electrons, local
depletions are common in electron distributions within the shock ramp, or loss-
cone distributions (for low energetic reflected electrons) and field-aligned beam
distributions (for high energetic reflected electrons) in the upstream electron
foreshock. These instabilities also relax over different time/spatial scales and
dissipate their energies by interacting back with both particles species.

Anisotropy-driven instabilities and non-equilibrium distributions instabilities
are mainly based on velocities gradients processes and may be considered as
sources of anomalous viscosity.
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Fig. 2. Sketch illustrating the various sources-mechanisms responsible for microscopic
processes.

3 Simulation Constraints for Simulating a Shock

When simulating a collisionless shock with a full particle code, different condi-
tions need to be satisfied and are summarized as follows:

3.1 Common Criteria for the Code Stability

A certain number of criteria needs to be satisfied for the code stability itself and
for describing space charge effects and magnetic effects on each particle motion
with enough accuracy. These criteria are common to any particle code based on
individual finite size particle; these can be found in many text books ( [1],[3],
[7], [17]), in previous ISSS proceedings ([9] to [15]) and in the review presented
by Pritchett (2002, this issue). These will not be detailed herein.

3.2 Initial Conditions Inherent to Shock Features

Some additional criteria need to be verified in order to satisfy the time and
spatial scales of the shock itself with appropriate accuracy and to include scales
of specific instabilities inherent to the dynamics of the shock front. Taking into
account the features of collisionless shocks summarized in Sect. 2, the main nu-
merical criteria specific to shock dynamics can be summarized in two classes
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corresponding to macroscopic and microscopic processes (upstream plasma pa-
rameters are used as reference values), respectively.

Numerical Criteria Related to Macroscopic Processes

a) Since the dynamics of the shock itself is strongly controlled by
kinetic effects of the ions (in particular by ion gyration), the time length of the
whole run must be much larger than one ion gyroperiod (Trun >> ω

−1
ci , where

ωci is the upstream ion gyrofrequency)
b) The size Lplasma of the plasma box needs to be much larger than

spatial scale covered by the shock during its overall propagation with velocity
Vshock within the plasma box (Lplasma >> Vshock/Trun).

c) Under certain conditions, some ions and/or electrons are reflected
upstream by the shock front and acquire a velocity vpart much larger than the
shock velocity Vshock. In addition, for oblique shocks, some wavetrain precursor
may also be emitted from the shock ramp (Sect. 2) with a velocity Vprec also
larger than Vshock. Then, the plasma box size needs to satisfy Lplasma >> vmax/
Trun, where vmax denotes the largest value between vpart and Vprec.

d) Additional conditions need also to be satisfied by the length size
Lplasma. First, space charge effects (via the build up of the electrostatic field)
play at the shock front an important role on particles dynamics in associa-
tion with the magnetic effects (Sect. 2); so do the inertia effects as well. As
a consequence the size Lplasma must be much larger than the Debye length
(Lplasma >> λDe, λDi), the particles gyroradii (Lplasma >> ρce, ρci), and the
inertia lengths (Lplasma >> c/ωpe, c/ωpi). Plasma parameters must be chosen
so that each characteristic plasma length is described with enough accuracy i.e.
is larger than the unit grid size Δ.

Numerical Criteria Related to Microscopic Processes

As summarized in Fig. 2, three groups of microinstabilities intrin-
sic to the shock dynamics are expected. In a linear theoretical approach, each
one is characterized by its own growth rate (γ) and wavelength (λinst). Such
information may be accessed by solving the corresponding dispersion relation.
At least, Trun and Lplasma values must be chosen so that the time length of
the run satisfies Trun >> γ

−1, and the size of the plasma box in any direction
verifies Lplasma,x,y >> λinst. Let us remind that such instability characteristics
are defined within a linear theoretical approach and for homogeneous plasma
conditions. These conditions are far from those intrinsic to the shock i.e. where
nonlinear and inhomogeneous effects are present. However, such information are
helpful in order to get some basic informations before starting the simulations.

Some simple approach may be also performed for identifying such instabili-
ties by using the intrinsic features of these instabilities and/or simple geometric
considerations. One example may be given for the cross-field current instabili-
ties triggered at the shock front as shown by [4] and [21]. Simulating a strictly
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Fig. 3. Sketch illustrating the two different configurations of the magnetostatic field
for simulating a strictly perpendicular shock when the upstream magnetostatic field
Bo is outside (resistive case including the cross-field currents instabilities) and inside
(non-resistive case) the simulation plane. A front rippling clearly appears characterized
by a scale length λripp in the resistive case.

perpendicular 2D (x,y) shock (propagating along x axis) may be performed with
two different orientations of the magnetostatic field Bo (Fig. 3). First, the Bo

field is contained within the 2D simulation plane (aligned along y axis); then,
the cross field current is outside this plane (along z axis) and instability con-
tribution is excluded from the simulation (non-resistive case). Second, the Bo

field is outside the 2D simulation plane (along z); then, the cross-field current
is inside this plane (along y) and instability contribution is self-consistently in-
cluded in the simulation plane (resistive case). These instabilities are responsible
for the front rippling. If the instability is still in the linear regime, this rippling
may be characterized by a wavelength λripp relatively easy to be measured; this
rippling is often moving with a velocity which can also be measured. Both mea-
surements allow to access the frequency ωripp characterizing this rippling, which
can be compared with frequencies of the expected instabilities. By using this
procedure, it was shown that the front rippling is related to the presence of
lower hybrid frequency waves triggered by cross-field current instabilities [21].
However, for obliquely propagating shocks, the rippling may be the contribution
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of different types of waves (as whistler precursor emitted from the ramp). In this
case, a more sophisticated approach based on local waves analysis is necessary
in order to identify the different waves components. In most cases, the existence
or the propagation features of instabilities require more than one dimension in
real space, i.e. 2D or 3D codes are necessary.

One difficulty is to include all possible instabilities for both electrons and ions.
However, such a difficulty may also be used as an advantage for focusing on a
given “dominant” instability selected by some appropriate way for instance. This
“selection” can be performed by using a judicious choice of plasma parameters,
of orientation of the magnetostatic field, and of the growth rate and wavelength
of the concerned instability (estimated by resolving the corresponding linear dis-
persion relation). The growth rate can largely vary between different instabilities;
the time length of the total run and the size Lplasma represent other parameters
to play with, for including or excluding a given instability. As a consequence,
the impact of the “selected” instability may be analysed on both electrons and
ions by a self-consistent way.

In summary, due to some computer constraints, some compromise is nec-
essary for including most macroscopic and microscopic processes, and may be
obtained by using nonrealistic values of mass ratio or of ratio ωpe/ωce.

3.3 Initial Conditions for Exciting a Shock

Different initial conditions can be used for exciting a collisionless shock. These
conditions often correspond to the first delicate phase of the simulation. Up to
now, five different methods can be identified (Fig. 4):

Relaxation Method (with Forced R-H Conditions)

This method has been initially proposed by [26], [27] in order to sim-
ulate hybrid simulations of a shock. The initial state consists of two uniform
regions separated by a thin intermediate layer. In the upstream region (LHS for
instance), ions are uniformly distributed along the real axis x and given random
velocities to approximate a Maxwellian distribution convecting toward the inter-
mediate region with appropriate density (n1), temperature (Ti1) and flow speed
(V1) along x. The upstream magnetic field (B1) and electrons temperature (Te1)
are also assumed to be uniform. The downstream region is prepared similarly
with density (n2), ion temperature (Ti2), flow speed (V2), magnetic field (B2)
and electron temperature (Te2). The thin intermediate region is prepared such
that the density is a linear function of x which matches n1 at the left and n2
at the right end and satisfies B/B1 = n/n1 = V1/Vx, some temperature profile
being assumed. The downstream quantities are computed from the upstream
values using the Rankine-Hugoniot relations with γ=5/3 and an assumed initial
value of Te2/Ti2 [39]. The aim of this method is to prepare at time t=0 a shock
transition sufficiently close to the final state so that the system can eventually
reach its final state by allowing the shock transition to evolve in time. The ini-
tial downstream state is by necessity an approximation. Since this pioneering
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Fig. 4. Summary illustrating the five different simulation methods used for exciting a
collisionless shock.

work, this method including several constraints has been more or less aban-
doned, and has been replaced instead by others listed below. One reason could
be the fact that the R-H conditions are initially forced in the system instead
of being reached by a self-consistent way after a certain time; this time must
be large enough so that the formed shock is independent of initial conditions.
Without such constraints, other methods are quite appropriate to analyse the
nonstationarity of the shock around and/or far from the front for instance. An-
other reason could be the relative simplicity of the other methods used nowadays.
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Injection Method

A plasma is injected from one side (LHS for instance) of the simulation
box and is reflected back when it reaches the other side (RHS), where specular
reflection conditions are locally applied (Fig. 4b). The reflected plasma interacts
with the incoming plasma and an interface forms between both plasmas. This
interface allows the jump transition in all local plasma momenta and in field
components between upstream and downstream regions. As time evolves, this
interface transforms into a shock which propagates from RHS to LHS [8], [38].

Plasma Release Method

This approach includes initially two different plasmas. It consists re-
leasing a hot and dense plasma (animated with an initial bulk velocity at time
t=0) into a relatively colder and less dense ambient plasma (at rest) as illus-
trated in Fig. 4c. At the frontier between both plasmas, an interface builds up
accompanied by a diamagnetic cavity which extends behind the propagating hot
plasma component. As time evolves, this interface propagates from LHS to RHS,
transforms into a collisionless shock, and reaches a regime independent of initial
conditions. This method has been adopted with 1-D full particle code by [29],
[30], [31] and more recently by [23], and with 2-D full particle code by [16]. It
reveals to be quite adapted for analysing shock dynamics and/or interface in-
stabilities in situations including plasma releases in solar physics such as CME
(coronal mass ejections), in active spatial experiments (AMPTE and CRESS
missions) and also in laboratory fusion experiments in which a dense and hot
plasma (resulting from a laser ablated solid target) is expanding within an ambi-
ent plasma. One advantage of the method is that the initial bulk velocity of the
hot plasma component is providing directly an estimate of the Mach regime for
the shock. In many cases, the abrupt transition between both plasmas is fixed
at time t=0 over one grid point only. However, it is recommended to smooth
out slightly this density gradient over several grid points in order to get a more
progressive transition between both plasmas.

Flow-Flow Method

Another method slightly different from injection and plasma release
is the so-called “flow-flow” method in which two counterstreaming plasmas are
launched each occupying the half of the box [32]. The plasma is continuously
injected from both sides of the simulation box with a given bulk velocity. After
some time, the two plasmas begin to couple and form a pair of interfaces. A pair
of shocks is formed at later times, which propagate in opposite directions away
from the center of the box.
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Magnetic Piston Method

In this case, an external current pulse is applied and added to the
self-consistent plasma current in Maxwell’s equations, which induces a pulse in
electric and magnetic fields components. This method has been intensively ap-
plied for 1D [19], [20] and 2D full particle simulations [21], [34] and references
therein. The pulse is propagating into the plasma and develops into a shock.
As time evolves, the shock front separates shortly from the propagating piston
itself. This method has several advantages: it is simple (only the location, the
amplitude and the characteristic time length Tapp of the pulse need to be de-
fined as initial conditions), and rapid (the shock builds up in a short time and
becomes independent on initial conditions over a time range much smaller than
one upstream ion gyroperiod). A few more practical precisions concerning the
application of the current pulse need to be provided as follows (Fig. 5):

a) The whole simulation box is divided into two parts: one is dedicated
to vacuum (no plasma), the other includes the plasma, as illustrated in Fig. 5a.
The pulse is applied within the vacuum region over a few grid points located
close the left hand side of the plasma region. As the pulse is applied, two pulse-
shaped waves are generated which propagate in opposite directions. One pulse
(called “compression” wave) enters almost immediately the plasma box, acts as
a “piston” and generates a shock front in front of it; the other pulse (called
“dilatation” wave) is propagating within the vacuum region. Some appropriate
boundary conditions – described in Sect. 3.5 – need to be included in order to
“kill” this undesirable wave.

b) the second point concerns the time range over which the current
pulse is applied. In practise, it is important to apply this pulse smoothly in
time so that the plasma has enough time to “admit” this perturbation without
generating some spurious “unphysical” or “undesirable physical” signatures. In
practise, the pulse amplitude is varying in time as follows: the amplitude varies
as a half-sinusoidal function within the time range (0, Tapp), and is constant for
the (Tapp, Trun). Time Trun is the time length of the whole simulation run, while
Tapp is a time value which needs to be adjusted (in practise, several hundreds
of time steps are recommended). One easy way to test whether Tapp value is
appropriate consists in simulating a strictly perpendicular shock (Θo = 90◦)
in the supercritical regime (with a reasonable simulation box size). If Tapp is
too short, a precursor is emitted from the ramp (Tapp=5 in case 1 of Fig. 5b)
propagating at the light velocity. This is in contrast with the fact that, for
Θo = 90◦, no upstream precursor is expected (Sect. 2). In fact, this precursor
has a physical meaning. When the pulse application is too rapid, high-k modes
are generated; as a consequence the second term (k2c2) of the wave dispersion
relation ω2 = ω2

pe + k2c2 corresponding to the light wave is not negligible any
more and is supporting this light emission. One simple way to avoid this emission
consists in increasing Tapp (=30 for instance) in order to smooth out the pulse
application, as illustrated in case 2 of Fig. 5b.
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Fig. 5. Sketch illustrating some details of the magnetic piston method. (a): config-
uration of the simulation box into two parts including respectively a vacuum and a
plasma part; the absorbing function Fmask is equal to 1 in the plasma part and de-
creases from 1 to zero value according to a quadratic law in the vacuum part. (b):
impact of the applied external current pulse on the shape of transverse electric and
magnetic fields, when the pulse application time is short (case 1: 0 < t < 5) and larger
(case 2: 0 < t < 30).

As a consequence, it is recommended not to apply a time varying pulse which
corresponds to a too sudden perturbation. Let us precise that the shock front
itself is characterized by a large jump in magnetic and electric fields components
in association with large variations in plasma momenta from low (upstream)
to high (downstream) values. The piston itself is characterized by a very rapid
variation of the plasma density from high to almost zero value when moving
further into the downstream region; using a simple picture, it acts a “snow-
plow” machine

Each method has advantages or inconveniences in terms of relative simplic-
ity and how quick the shock is formed. In any case, the main purpose must be
satisfied: same characteristics of the shock need to recovered (for similar Mach
regime and plasma conditions) for any used method, as soon as the shock dy-
namics becomes independent on initial conditions.

3.4 Full Particle Simulations of Planar and Curved Shocks

All above methods of Sect. 3.3 have been mainly applied for initiating a planar-
like shock in 1-D (with infinite shock width) and 2-D (with finite shock width)
simulations. Similar technics can be also applied to self-consistent curved shocks.
However, the number of curved shock simulations is quite limited and restricted
to a few works only. One is based on 2D hybrid simulations ([40]; Winske and
Omidi, this issue), where the shock is initiated by using the reflecting-wall type
method: the flat reflecting obstacle (i.e. the reflecting wall) has been replaced by
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a curved obstacle so that an expanding curved shock wave is formed after the
mutual interaction of incoming and reflected plasmas takes place. The other is
a 2-D full particle simulation of curved shocks performed by [36], [37], based on
magnetic piston method. In this last example, the pulse current is now applied
over a few grid points distributed within a small cylinder, in order to initiate
the curved shape of the shock. The critical question concerns the boundary
conditions: indeed, due to the constraints of up-to-date computer facilities, these
full particle simulations have been limited at present time to quasi-perpendicular
curved shocks (where 90◦ < Θo < 45◦). Simulations including the full angular
range 90◦ < Θo < 0◦, i.e. when the full magnetostatic field is within the 2-D
simulation plane, are quite difficult to be performed at the present time. Indeed,
more and more particles are reflected by the shock front for strongly oblique
directions and are streaming away along the magnetic field into the upstream
region (self-consistent formation of the foreshock). Then, high energetic reflected
particles reach within a short time the opposite side of the simulation plasma
box, and the simulation has to be stopped. This problem can be resolved by
a “trick” which consists in following the motion of particles within the real
space projected into the 2-D simulation plane, instead on following the same full
motion within this plane itself. One consequence is that the field-aligned motion
is intact (in terms of velocity dynamics since each particle always has three
individual velocity components), but will be extended over a reduced distance
in real space, which is in favour for using a large but reasonable simulation
box size. In other words, one performs “pseudo 3-D” full particle simulations.
For so doing, the upstream magnetostatic field is characterized by two Euler
angles: one angle corresponds to the tilt-angle within the plane (necessary for
oblicity), the other corresponds to a tilt-angle out of this plane. The combination
of both angles allows to control easily the extend of the curved shock and of
the resulting foreshock. Such method has allowed to reproduce and to analyse
in detail the electron foreshock [37]. A refinement of this method has recently
allowed to extend the restricted range to 90◦ < Θo < 30◦ in order to analyse
self-consistently the transition from quasi-perpendicular to quasi-parallel angular
domains.

3.5 Boundary Conditions Specific to Shocks Simulations

Very often, some specific boundary conditions need to be adapted since a shock
corresponds to a jump of entropy; the origin of the entropy production by turbu-
lence is the time behaviour of the distribution function [33]. Indeed, characteris-
tics of plasma in upstream and downstream regions are quite different and due
to irreversible processes. Then, two types of boundary conditions are necessary:
one for fields components, the other for the particles dynamics. These boundary
conditions represent the second delicate phase of the simulation:

a) Field components: full particle simulation codes may be based on
finite different technics or FFT’s technics (Fast Fourier Transform), in order to
resolve the space derivatives involved mainly in Poisson-Maxwell’s equations.
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One can use FFT’s even for collisionless shocks simulations where two differ-
ent states of the plasma are fully involved in the plasma box (in upstream and
downstream regions respectively). However, one has to suppress artificially any
possibility for downstream ingredients to be injected in the upstream region
or vice versa because of the intrinsic periodicity features. One example can be
given for the magnetic piston method presented in Sect. 3.3. As illustrated in
Fig. 5a, the dilatation pulse-like wave propagates within the vacuum box but,
when reaching the LHS wall at (x=0), may reenter the plasma box at its RHS
(at x=2 Lx). Then, this dilatation pulse may perturb the upstream region of
the shock, which is not desirable. One way to resolve this problem consists in
applying an artificial absorbing or “masking” function Fmask everywhere in the
simulation box: Fmask=1 within the whole plasma box so that all fields compo-
nents are unchanged. However, Fmask varies according to a quadratic function
from 1 to zero (or small value) when moving from the RHS to LHS of the vacuum
box (Fig. 5a).

How to apply this function? Experience shows that a few fields components
only, -and not all fields-, need to be multiplied by this function. Indeed, let us
stress that it is important to leave the plasma with some degrees of freedom i.e.
to let the self-consistent effects act. In summary, the method consists in “killing”
a few fields components in such a way that other components will be “killed”
self-consistently.

b) Particle dynamics: let us consider again the magnetic piston method
and Fig. 5 as a reference. Within the plasma box, downstream and upstream re-
gions are extended respectively from the LHS wall to the shock front, and from
the shock front to the RHS wall. During their thermal motion (plasma at rest)
some upstream particles may reach the RHS wall, and need to be treated appro-
priately in order to avoid any artificial particles accumulation there (spurious
local space charge effects), or any reinjection back into the vacuum region (via
x=0) in the case some periodic conditions are used in the code. One simple way
to avoid these problems consists in applying specular reflection conditions for
any particle reaching this RHS wall (at x=2 Lx). On the statistical viewpoint,
experiences show the number of particles which suffer such reflection from vx to
-vx (in 1D code for instance) is balanced by particles being reflected from -vx to
vx so that no local accumulation can build up. This point can be easily checked
by plotting an enlarged view of local particles density or of phase space plots
around the RHS wall.

The situation is more simple on the LHS wall of the plasma region (at x = Lx

in Fig. 5a). Indeed, as the piston acts as a “snow-plow machine” during its prop-
agation, the plasma density behind it is almost zero. However, some particles
may be still present behind, and for safety same specular reflection conditions
are also applied on particles which could reach the LHS wall. Experiences show
that there is no risk for these “artificially” reflected particles to reach back the
downstream region of the shock nearby the front, since the shock front is propa-
gating at velocity much faster than the piston itself. However, it is recommended



Simulation of Collisionless Shocks 69

to check this point (with enlarged plots of phase space around the wall) for a
new simulation practitioner.

4 Methods for Validating Numerical Simulation Results
on Collisionless Shocks

In practise, applying all conditions of Sect. 3 leads to find a compromise in
the choice of plasma parameters. As already mentioned in Sect. 3, non-realistic
values of the mass ratio and the ratio ωpe/ωce of electron plasma frequency over
gyrofrequency are commonly used. In order to validate the results issued from
this compromise, different strategies can be followed:

– Validation by performing simulations runs for similar shock and
plasma conditions with full particle codes of different dimensions (1D or 2D
for instance, as commonly used at present time). This method may be applied
to confirm any process which is independent of shock dimension (cyclic self-
reformation of the shock front for instance; [2], [19], [21]. Later on, this type of
validation has the advantage for performing many simulation runs at a lower
cost i.e. by using the lowest dimensional code.

– Validation by performing a parametric study on some “sensitive”
plasma parameters in order to recover a similar process over the corresponding
scale. For instance, the cyclic period of the shock front self-reformation men-
tioned above is always of the order of the mean ion gyroperiod measured in the
ramp (for a quasi-perpendicular shock in super-critical regime). This feature and
associated relative scales can be easily recovered by performing various full par-
ticle simulations based on different mass ratios, since the ion gyromotion (which
drives the self reformation process) is very sensitive to the mass ratio. Same
procedure can apply for confirming the size of the trapping loop of reflected ions
(of the order of the local ion gyroradius) in a supercritical shock regime.

– Validation by comparing results issued from hybrid and full par-
ticle simulations. This comparison is a delicate question which has only been
approached recently [23]. One of the main results is that similar shock dynamics
(except electron kinetic dynamics) can be recovered in both types of simulations
provided that some appropriate readjustment on the grid resolution size and on
some plasma parameters is performed.

– Validation by developing a simple analytical model dedicated to a
particular process. For instance, a simple hybrid-type model has been developed
recently and allows to show that the nonstationary behaviour of the shock front
(due to its cyclic self-reformation) depends mainly on the density of reflected
ions accumulated upstream. In other words, this mechanism is inherent to the
shock front itself, and is independent on the mass ratio and on ωpe/ωce ratio
used in full particle simulations [6].

Moreover, one basic and additional validation of the results consists in ver-
ifying the conservation of total energy versus time (fields and particles) in the
system.
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5 Advantages of Full Particle Simulations
for Analysing Collisionless Shocks

A key advantage of full particle simulations for analysing collisionless shocks
is that all physical scales (both ions and electrons) are fully accessible. This
accessibility appears in different features as illustrated below:

5.1 Evidence of the Shock Front Turbulence

The shock front exhibits a strong nonstationarity which represents one typi-
cal problem to be analysed in details with the help of the multi-satellites mis-
sion CLUSTER-2, as illustrated in a computer-generated movie shown during
the ISSS-6 meeting. As an example, two different time/spatial scales have been
identified in full particle simulation results: one (ion scale) is due to the cyclic
self-reformation of the shock front, the other much smaller than the ion scale (not
clearly identified yet for oblique propagating shocks) is due to the propagation
of the front rippling along the shock front direction [4], [21].

5.2 Evidence of Upstream Precursor

In full particle simulations, this precursor may easily access to smallest and
largest physical scales such as electron scales (for oblique quasi-perpendicular
shocks) or ion scales (for oblique quasi-parallel shocks). Analysing the impact of
each population on this precursor (and of associated wave steepening and damp-
ing) is quite possible since the dynamics of both populations is fully involved.
The precise identification of waves contributing to this precursor in different
Mach regimes is under active investigation at the present time, in order to be
compared with experimental data of the multi-satellites mission CLUSTER-2.

5.3 Appropriate Scaling of the Shock Ramp

The ramp thickness is shown to be larger than electron inertia length but smaller
than ion inertia length. Accessibility to such scales via magnetic and electric field
profiles do have an impact on the acceleration and heating of particles passing
through the front [22]. A similar feature is expected for reflected particles too.
One key point is that this thickness varies self-consistently in time according to
the different turbulence stages of the front (for a fixed Mach regime); in addition,
it adjusts itself to different plasma conditions and propagation directions of the
front.

5.4 Appropriate Description of the Full Electrons Dynamics

This property is inherent to the fact that all kinetic effects are fully included.
Full particle simulations reveal to be an essential tool to analyse the electron dy-
namics via a self-consistent approach. Thanks to the increasing power of super-
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computers facilities, this analysis has been possible. As recent typical exam-
ples, these simulations have allowed to analyse in great detail (i) the source-
mechanisms responsible for the breakdown of adiabaticity of transmitted elec-
trons [25], (ii) the reflection of electrons at the front [24], (iii) the electron pre-
heating in the whistler precursor of oblique shocks for various Mach regimes [28],
[35], or (iv) the formation of the electron foreshock in a curved shock simulation
[37]. A few examples will be illustrated in Sect. 6.

6 Strategies of Analysis Used in Post-processing Stage

Different types of analysis may be developed in the post-processing stage. We
will distinguish two approaches which require complementary post-processing:
analysis of the basic mechanisms involved in both particle and field dynamics,
and analysis dedicated to “mimicing” measurements performed on board of a
real space mission.

6.1 Strategies Used for Analysing Basic Mechanisms
from Simulation Results of Collisionless Shocks

Results issued from full particle simulations of collisionless shocks present some-
times complex structures and/or phenomena which require different but com-
plementary approaches. At the present time, four different approaches can be
identified:

– Comparison of results obtained from runs using different dimen-
sional codes or magnetic field configurations. This allows to include or exclude
in the simulations some effects at will. A first example is the study of the source
mechanism responsible for the shock front rippling where the orientation of the
static magnetic field is in (no rippling) or out (rippling) the simulation plane as
illustrated in Fig. 3. A second example is the impact of the shock front rippling
on electrons dynamics analysed with 2 − D code (inhomogeneous shock front)
and 1−D code (homogeneous shock front), where 1−D and 2−D simulations
are performed for similar shock conditions and with the same plasma parameters
[24]. Such a procedure allows to analyse and to quantity the impact of the shock
front rippling in particles dynamics. A third example is the comparison of 2−D
results between self-consistent planar and curved shock which allows to analyse
the impact of curvature on particle dynamics [36], [37].

– Preselected particles trajectory (or “PPT”) analysis. This method
reveals to be quite helpful for analysing processes of high complexity by using
a large number of diagnostics. It has been recently used for analysing the re-
flection mechanisms of electrons encountering a shock front [24]. It requires two
successive runs and allows to follow particles trajectories without any a priori
assumption. In the first run, reflected electrons are identified among all electrons
and “marked”. A second run identical to the first one is performed during which
most information of preselected (i.e. previously “marked”) electrons are stored as
a function of time. These information include the usual quantities as locations
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and velocities components, but also the fields and field gradients components
experienced by each “marked” particle. These last information allow to analyse
the basic drift mechanisms that each individual particle is suffering versus time
and versus its relative location within the shock front.

This method is fully self-consistent (in contrast to a “test particles” ap-
proach) and presents two advantages: first, it allows to perform an “individual
particle” approach in order to identify precisely some typical trajectory within
the shock front and the underlying acceleration mechanism. By this way, three
main classes of mechanism responsible for electrons reflection have been identi-
fied: magnetic mirror (or fast Fermi) process, trapping process and multi-bounces
process (which combines the two first mechanisms). Second, it allows to perform
a “statistical” approach in order to identify some particular groups of electrons.
This approach has demonstrated the formation of electron bursts in time, and of
electron packs in space (i.e. reflected electrons form beams which are not homo-
geneous in space). As a consequence, a field-aligned electron beam resulting from
electron reflection is not spatially homogeneous. This result is in contrast with
initial conditions of most previous full particle simulations of wave emissions
triggered by beam-plasma interactions.

– Classical “test particles” analysis. In some cases, the self-consistent
results include several intricated mechanisms over quite different scales and re-
veal to be quite complex to analyse. Then, a complementary approach consists in
“freezing” artificially a part of this self-consistency in order to recover a partial
simplicity necessary for a better understanding of a given process. As an exam-
ple, this approach has been quite helpful to identify the adiabatic / non-adiabatic
processes applied to transmitted electrons passing through the shock front [25].
The method is using profiles of electric and magnetic fields not deduced from
an analytical model but rather obtained from full particle simulations at a given
time. Then, all electrons and ions spatial scales are already included in an ap-
propriate way. A set of particles is launched against the shock front. Since the
characteristics of these particles are under the control of the user, one can choose
only particles in the core (low energy) or in the tail (high energy) of the veloc-
ity distribution at will in the initial conditions. Changes in trajectories and in
velocities components are analysed individually and/or statistically, during and
after their interactions with the shock front.

A judicious choice of field components profiles obtained from simulations
may offer a more profound analysis of the underlying mechanisms of particle
acceleration and heating at a relatively low computer cost. This is illustrated
by considering three successive steps as follows. In a first step, let us consider a
set of fields obtained from a 2-D full particle simulation where the shock front
is propagating along the x axis, and is planar and nonhomogeneous (rippling)
along the y axis. In a second step, let us consider all 2-D field components at
a given time, and in a third step these same field components which have been
y-averaged; in this last step, the front can be considered as one-dimensional,
homogeneous and infinite along the y-axis. The third step allows to analyse the
basic interaction mechanism of particles with their characteristic scales (gyro-
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radii, inertia lengths, Debye lengths) versus the characteristic scales of the front
(of precursor if any, of the foot, of the ramp and of the overshoot) with a simpli-
fied but still self-consistent shock. Comparison of results obtained by using field
components obtained from steps 3 and 2 allows to quantity the impact of the
front inhomogeneity at a fixed time. At last, the comparison of results obtained
by using fields components obtained from steps 1 and 2 will provide information
on the impact of the time-dependant field dynamics i.e. of the shock front tur-
bulence. This strategy is presently under active use for analysing the dynamics
of particles reflected by and transmitted through a shock front. It may be also
applied for any other analysis.

– “Test particles” and “PPT” combined analysis. A further additional
and complementary approach consists in analysing results issued from the above
“PPT” method (self-consistent effects included) and the test particle method
(self-consistent effects excluded). This combined approach can be also appropri-
ate to determine time/spatial scales over which self-consistent effects play a key
role or can be neglected. These information can be quite helpful before initiat-
ing complementary theoretical analysis where inclusion of self-consistent effects
represents a great challenge and is often neglected.

6.2 Strategies Using “Virtual” Satellites
“Mimicing” the Real Experiments

Once a simulation is performed, another question appears: is it possible to insert,
in this simulation, the experimental conditions of local measurements specific to
a given space mission? Of course, this question is not dedicated to full par-
ticle simulations only and can be extended to any type of simulation. If this
approach could be systematically resolved, it would allow to establish a more
direct link between the simulation and experimental results. Such a procedure
has been initially developed for “mimicing” the crossing of a quasiparallel shock
issued from 1D hybrid simulation code [5]. At that time, the shock crossing was
restricted along the shock normal only, because of the use of 1D simulation re-
sults. Recently, some efforts have been invested in order to “mimic” the local
measurements made by the four-satellites Cluster-2 mission crossing a 2D shock
issued from 2-D full particle simulations. In this case, any direction of the shock
crossing with respect to the shock normal may be mimiced. We will give two
typical examples:

(i) in the first example, the purpose was to explain the different magnetic
field signatures of the measurements made by each satellite during the shock
crossing. This procedure (developed with AVS interactive graphic package) is
summarized as follows. First, a 2-D full particle simulation of a supercritical
shock has been performed. Nonstationarity of the shock front (Sect. 5.1) and
corresponding spatial/time scales have been retrieved. The attention is focussed
on the longest characteristic time scale; for doing so, we note the start and end
times of a given cyclic self-reformation. Second, another run is performed iden-
tical to the first one, but where field components are stored at each (or a few)
time step(s) between the start and the end time of the whole selected reformation
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Fig. 6. (i) Bottom panel shows the view (from above) of the main magnetic field com-
ponent Btz(x, y) and its crossing by four “virtual” satellites “mimicing” the Cluster-2
mission, at the last time of the animation (end of a cyclic self-reformation of the shock
front). During the shock propagation from the left to the right hand side along x-axis,
each satellite has moved over a distance indicated by a short straight coloured line with
arrow. (ii) Top panel shows the local measurement of the Btz(x, y) magnetic compo-
nent made by each satellite during the shock front crossing; the colour of each curve
corresponds to that of the satellite tracking shown in bottom panel. Four different sig-
natures of the Btz(x, y) component illustrate the fields turbulence at the shock front
during its crossing. Satellites are at relative mutual distances of 600 Km approximately.

cycle. Let us focuss now on the main magnetic field component. Then, we have
a first x-y plane containing these B(x,y) data with a high time accuracy; the
size of this table corresponds to the size of the plasma box. Third, we separately
develop an AVS tool defining a second x-y plane (same size as the plasma plane)
including four points which can be driven independently from each other. Each
point represents a “virtual” satellite and has, within this plane, dedicated start-
ing location (x,y) and motion driven by velocity components, so that any type
of shock crossing (inbound, outbound, oblique, normal crossing, etc..) may be
reproduced independently of the shock motion. Fourth, a third plane is defined
which includes the combined projection of both previous planes. Measurements
of local B(x,y) field performed by four “virtual” satellites during a typical shock
crossing are shown within this plane in Fig. 6. Four different signatures versus
time of the main magnetic field component are clearly evidenced by the differ-
ent satellites; these illustrate quite well the field turbulence which takes place
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over different times and spatial scales at the shock front. Complementary waves
analysis are now under active investigation in order to identify these waves.

How to optimize this post-processing techniques? This “mimicing”
procedure offers different advantages and can be used in two different ways. The
first one consists in reproducing experimental results with a given configura-
tion defined by the real satellites. In other words, one only inserts within the
simulation results the configuration approaching as much as possible the real
conditions; the initial priority is motivated by data obtained by conditions of
the real space mission. The second way consists in inverting this priority. As
an example, let us focus on the small scale turbulence along the shock front. Its
analysis requires to fix at least two “virtual” satellites aligned along the direction
parallel to the shock front and distant each other over a scale Lsat larger than the
characteristic scale λripp (Sect. 3.2). Then, these satellites should cross the shock
front almost simultaneously so that any waves activity along x-direction should
be minimized in the signatures of the shock crossing. By adjusting the scale Lsat

with respect to λripp, one can analyse different types of waves contributing to
the front nonhomogeneity; indeed, λripp may vary according the Mach regime,
the shock angle and the upstream plasma β conditions. This allows to define
the best “satellites” configurations for analysing or identifying a certain type of
wave components contributing to this local turbulence. Further, the next step
will consist in searching among the whole set of shock crossing by CLUSTER-2,
the configurations approaching that of the “virtual” satellites (for similar Mach
regime conditions), and in comparing experimental and numerical signatures. In
this case, the initial priority is motivated by results obtained by the “virtual”
satellites. Similar procedures can be also used for local measurements of parti-
cles distribution functions; for so doing, 2D full particle simulations have been
made recently based on a high number of particles per grid, in order to obtain
appropriate local statistics.

(ii) the second example concerns the detailed analysis of the electron fore-
shock. In this case, any experimental measurement of the particle distribution
function is “local” in space but involves particles originating from quite different
regions, and which are counted “locally” at the time and location of the measure-
ment. These electrons have been reflected from different locations of the curved
shock front; different reflection processes are involved which can be identified
with different signatures in the electron distribution. In recent 2-D full particle
simulations of electron foreshock [37], such “time-of-flight effects” which play
an important role have been self-consistently included. How to “mimic” the real
measurement performed by the satellite? For so doing, a graphical procedure has
been developed which consists by superimposing a curved grid adapted to the
curved bow shock and aligned to the upstream edge of the electron foreshock.
Such a procedure allows to keep the size of each grid constant when moving in
angle or with upstream distance from the front; this feature cannot be obtained
with the use of a radial grid set (centered at the shock curvature point). The size
of the grid must be chosen in appropriate way (large enough to have credible
statistics within each grid, and small enough to scan the whole foreshock region
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with a minimum accuracy in angle and in distance from the front. Then, within
each grid, local distribution is calculated and energy spectrum analysis is also
performed. The next step (not made yet) consists in superimposing the trajec-
tory of a “virtual satellite” to this curved grid set, “mimicing” the real satellite
trajectory. This trajectory will select the set of successive grids within which
the local electron distribution is measured; then, a direct comparison between
experimental and numerical results will be possible. A refinement can be later
obtained by adjusting the size of the space grid to the integration time of the
real experiment (performed often over the satellite spin time period). Indeed,
this feature has a full meaning since the size of each grid corresponding to the
distance covered by the satellite during its full spin period is constant, whatever
the angle along and the distance from the curved shock front are.

These examples illustrate the increasing importance of the post-processing
stage and the efforts which need to be invested. More efforts are necessary at a
time the number of particles involved in simulations and the size of associated
field components tables are drastically increasing. In addition, multi-dimensional
full particle codes will be also more commonly used with the increasing power of
supercomputers and appropriate optimization of simulations codes. This means
that improved graphics techniques (interactive 2D/3D if possible) with sophis-
ticated and real time animations facilities (as virtual reality techniques) need to
be encouraged and adapted to space plasma physics problems in order to analyse
the huge amounts of stored data obtained from these large scale simulations.
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Simulation of Electron Beam Instabilities
and Nonlinear Potential Structures
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Abstract. This paper gives a tutorial for the electrostatic instabilities induced by
electron and/or ion beams in space plasmas. After a brief review of the linear theory
of the electron/ion beam instabilities, we describe various types of nonlinear processes
reproduced by electrostatic particle simulations. We first study the basic nonlinear
processes in a uniform system with periodic boundaries, and then we study the beam
plasma interactions in a nonuniform system with open boundaries. Importance of ion
dynamics in the nonlinear evolution of the electron beam instabilities are discussed
based on the simulations with different distributions of ions.

1 Introduction

Electron beams are formed in various processes in space plasmas, such as particle
reflection at shocks, magnetic reconnection, inductive electric field, and parallel
electric field of kinetic Alfven waves. Electron beams cause strong electrostatic
instabilities, which lead to excitation of Langmuir waves, electrostatic solitary
waves (ESW) or ion acoustic waves through various nonlinear processes. Elec-
tromagnetic waves such as whistler mode waves are also excited by electron
beams directly via wave-particle interactions or indirectly through wave-wave
interactions. In this tutorial, however, we focus our attention on electrostatic
potential structures along the magnetic field, which are often observed in the
plasma sheet boundary layer, the auroral region and the magnetosheath. In
these regions, electron beams are also observed as enhanced non-thermal fluxes
with flat-top diffused distribution functions.

The purpose of this article is to provide an introduction to nonlinear pro-
cesses associated with these observations of electrostatic waves and particles in
space. In the following sections, we first study linear dispersion properties of
electron beam instabilities, and then dynamics of resonant particles and forma-
tion of ESW as reproduced by a simple electrostatic particle simulation. We
also study decay of ESW in a uniform periodic system, spatial evolution of a
localized electron beam in an open system, and coupling with oblique low fre-
quency modes in a two-dimensional system. These nonlinear electrostatic wave
phenomena are readily reproduced by particle-in-cell simulations where electro-
static field are solved either by solving Poisson’s equation or by solving a full
set of Maxwell’s equations. Detailed descriptions of the numerical techniques are
found in chapters for KEMPO1 and TRISTAN codes in a simulation book edited
by Matsumoto and Omura [9]. The book and simulation codes can be downloded
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from the website: http://www.terrapub.co.jp/. The following sections describe
essential physical processes found in simulation runs where electron/ion beams
are assumed as the initial condition.

2 Linear Dispersion Relation

We assume a few species of electrons and ions drifting along the static magnetic
field. Particle distribution functions are defined in the three-dimensional velocity
space. For simplicity, however, we neglect electric and magnetic field perturba-
tions in the directions perpendicular to the static magnetic field. By integrating
the velocity distribution function with two velocity components perpendicular to
the magnetic field, we obtain a reduced velocity distribution function fs(v, x, t)
of the parallel velocity component v. The kinetic description of electron beam
instability is given by the dispersion relations derived from the Vlasov equation
for the species “s”,

∂fs

∂t
+ v

∂fs

∂x
− qs
ms

∂φ

∂x

∂fs

∂v
= 0 (1)

and Poisson’s equation,

∂2φ

∂x2 = − 1
εo

∑
s

qs

∫ ∞

−∞
fsdv (2)

where φ is the electrostatic potential and the x-axis is taken along the magnetic
field. It should be noted that there arises no effect of the magnetic field on
electrostatic interactions in the one-dimensional system taken along the magnetic
field.

We linearize the Vlasov equation by separating the distribution function into
unperturbed and perturbed components

fs(v, x, t) = fso(v) + fs1(v, x, t) (3)

We assume a Maxwellian velocity distribution function for the unperturbed com-
ponent.

fso(v) =
nso√
2πVts

exp(− (v − Vds)2

2V 2
ts

) (4)

where nso is an unperturbed number density, and Vts and Vds are thermal and
drift velocities, respectively. Applying Fourier and Laplace transforms to the
Vlasov and Poisson equations in space and time, respectively [e.g., Ref. [11]], we
obtain the following dispersion relation of electrostatic waves with wave vectors
parallel to the static magnetic field.

D(k, ω) ≡ 1−
∑

s

Π2
s

k2

∫
L

dgso/dv
v − ω/kdv = 0 (5)

where Πs is the plasma frequency of particle species “s” given by

Πs =

√
nsoq2s
εoms

, (6)
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and gso(v) is a normalized unperturbed velocity distribution function given by
fso(v)/nso. The wavenumber is assumed to be a positive real variable and the
frequency is a complex variable, i.e., ω = ωr + iγ. The integration over the
velocity is taken along the Landau contour [7]. When the thermal velocity is
comparable to the phase velocity, the dispersion relation yield a finite imaginary
part, i.e.,

Dr(k, ω) + i Di(k, ω) = 0 (7)

If |γ| << |ωr|, we can obtain an approximate growth rate,

γ = − Di(k, ωr)
∂Dr(k, ωr)/∂ωr

(8)

An instability (γ > 0) due to the imaginary part of Di is called a “resistive
instability” .

When the thermal velocities are small enough, i.e.,

ω

k
− Vds >> kVts, (9)

the dispersion relation is simplified to the following form

1 =
∑

s

Π2
s

(ω − kVds)2
(10)

It is noted that the dispersion relation has no imaginary part. An instability
due to a positive γ of a solution of the above equation is called a “reactive
instability” . A typical example of reactive instabilities is a bi-stream instability
with two cold electron beams of approximately equal densities as shown in the
left panels of Figs. 1(a) and 1(b). Let us assume the densities of the electron
beams are equal, and the relative drift velocity between them is Vd. Inserting
Π1 = Π2 = Πe/

√
2 into (10), and neglecting the term of the background ions,

we find that the maximum growth rate γmaxis 2−3/2Πe at k = 31/22−3/2Πe/Vd.
Another example is the Buneman instability [3] caused by a single electron

population with a finite drift velocity with respect to the background ions. In
Fig. 2, we plotted linear growth rates of the Buneman instability for different
thermal velocities of electrons. In the case of reactive instabilities with cold
electrons and ions, the dispersion relation takes the following form rewritten
from (10).

1 =
Π2

e

ω2 +
Π2

i

(ω − kVd)2
(11)

where the cold electrons are at rest and ions are drifting with Vd. Since Π2
i <<

Π2
e , the dispersion relation is also for the electron weak-beam instability illus-

trated in Fig. 1(c), if we assume Πi represents the plasma frequency of the weak
electron beam. Assuming α ≡ Π2

i /Π
2
e << 1, we can obtain the maximum growth

rate γmax = 31/22−4/3α1/3Πe with k = Πe/Vd (see e.g. Ref. [14]). Noting that
α = me/mi for the Buneman instability, we find γmax = 0.056, 0.15, 0.24 for
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Fig. 1. Initial and final velocity distribution functions of (a) bi-stream instability
with hot ions, (b) bi-stream instability with cold ions, (c) weak-beam instability, (d)
bump-on-tail instability. [after Ref. [12]]

mass ratios (mi/me) = 1836, 100, 25, respectively. The reduced mass ratios are
often used in full particle simulations to reproduce coupling processes of electron
and ion dynamics with a limited computer capability.

In the Buneman instability, a wave mode with the maximum growth rate
grows to a large level to form large potentials that can trap the whole population
of electrons. Electrons are diffused over a wide range of velocity around the
drifting ions, whereas an electron beam in the weak-beam instability is diffused
over a relatively small range of velocity around a velocity slightly smaller than
its initial velocity. As the thermal velocity of electrons increases, the growth rate
becomes small as shown in Fig. 2. The nature of the instability becomes resistive
rather than reactive.
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Fig. 2. Linear dispersion relations of Buneman Instability for different thermal velocity
of electrons. A reduced mass ratio mi/me = 100 is assumed.

The maximum growth rates of resistive instabilities depend on the density of
the electron beams and the thermal velocity of the background electrons and/or
ions. More specifically, the gradient of the velocity distribution function at the
phase velocity of a growing wave determines the growth rate. A typical example
is the bump-on-tail instability as illustrated in Fig. 1(d). A wave mode with the
maximum growth rate grows from a thermal noise level to a level that traps
the resonant electrons diffusing the electron beam effectively. This is a coherent
process due to the dynamics of phase bunched electrons as described in the
following sections.

When the growth rate is very small (γ << ω and γ << kVts), the quasi-linear
diffusion [11] takes place to make the velocity distribution function marginally
stable. The diffusion is an incoherent process induced by independent waves with
random phases. In most of beam instabilities starting from thermal fluctuations,
the quasi-linear diffusion is only found after the saturation and decay of the
most unstable mode. In particle simulations, thermal fluctuations are especially
enhanced because of the limited number of superparticles in the Debye length.
The enhanced fluctuations can also cause a diffusion similar to the quasi-linear
diffusion.
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3 Nonlinear Trapping of Particles

When an electron beam instability saturates after a sufficient growth time
(γmaxt > 1), most of the electrons forming the beam are trapped by coherent
electrostatic potentials formed by the dominant wave mode with the maximum
linear growth rate. The trajectories of the trapped electrons are described by the
equations of motion under a wave with wavenumber k, frequency ω and wave
amplitude Ew.

dv
dt

=
qs
ms
Ew sin (kx− ωt+ ζo) (12)

dx
dt

= v (13)

Taking a frame of reference moving with the wave phase velocity as a variable
of the velocity,

θ = k(v − ω
k

) = kv − ω (14)

and defining a phase ζ = kx − ωt + ζo + π for a positive charge (qs > 0) and
ζ = kx − ωt + ζo for a negative charge (qs < 0), we obtain the equation of a
pendulum.

dθ
dt

= −ω2
t sin ζ (15)

dζ
dt

= θ (16)

where ωt is the trapping frequency given by

ωt =

√
k|qs|Ew

ms
(17)

Integrating (15) and (16), we obtain an equation of a particle trajectory in (θ, ζ).

θ2 = 2ω2
t cos ζ + C (18)

where C is a constant corresponding to a specific trajectory.
Resonant particles with velocities close to the wave phase velocity oscillate

around a stable equilibrium point at (θ, ζ) = (0, 0) with the trapping frequency.
The saddle point of resonant particle trajectories is located at (θ, ζ) = (0,±π),
which gives a separatrix of the trapping region. The maximum values of θ of the
trapping region is given by kVt = 2ωt, where Vt is called a trapping velocity.
In the presence of a large electrostatic wave, the velocity distribution function
of the electron beam becomes flat over the range of Vr − Vt < v < Vr + Vt.
Resonant electrons are diffused over the velocity range, but it has a distinct
structure in the velocity phase space. The trapped particles oscillate fast in the
space around (θ, ζ) = (0, 0) with frequencies close to the trapping frequency
ωt, while particles close to the separatrix of the trapping region move slowly
especially near the saddle point (Fig. 3). The modulation in the velocity results in
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Fig. 3. Schematic illustration of particle trapping in a wave potential well [8].

the density modulation. Especially when the resonant electrons become trapped
under a growing wave, most of the particles remain just inside the boundary
of the separatrix making the center of trapping oscillation (θ, ζ) = (0, 0) a void
region, which we call an “electron hole” for electrons and an “ion hole” for ions.
An electron hole corresponds to a positive electrostatic potential, while an ion
hole is a negative potential.

4 Coalescence of Electron Holes

Most of the electron holes, whose drift velocities are approximately the same,
coalesce with each other by converting a part of the electrostatic energy to
the thermal energy of trapped and untrapped resonant electrons. In Fig. 4, we
plotted a series of phase plots of electron holes found in a long time evolution
of bi-stream instability with warm ions as illustrated in Fig. 1(a). We assume a
one-dimensional system consisting of 1024 grid points and periodic boundaries.
We put two electron beams with equal densities and a neutralizing thermal ions
at rest with one of the electrons. The other electrons are drifting with a velocity
Vd. The thermal velocities of both electron beams are Vte = 0.05Vd, while that
of ions is Vti = 0.1Vd. We assumed a reduced mass ratio mi = me = 100. In
order to suppress the thermal fluctuation, we used 10,240 superparticles per cell
for each species.
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Fig. 4. Phase plots of two electron holes coalescing with each other to form a larger
electron hole. Some of the trapped particles are detrapped from the trapping region,
releasing energy from the coalesced electron holes to establish a new state of the BGK
equilibrium.

When the excited electrostatic potentials are on a normal mode without
dispersion, the potential structures travel with the same phase velocity. The
adjacent electron holes attract each other [4] and they coalesce with each other
to form larger electron holes. Through coalescence there arise isolated potentials,
which are close to the BGK equilibrium, which is a time-independent solution
of Vlasov-Poisson equations [1].

By taking a frame of reference moving with one of the electron holes, where
we can assume that ∂/∂t = 0, we obtain from (1),

v
∂fs

∂x
− qs
ms

∂φ

∂x

∂fs

∂v
= 0 (19)

We define an energy variable

Ws ≡ 1
2
msv

2 + qsφ(x) (20)

From (19) we find that an arbitrary function of the energy variable fs(x, v) =
F (Ws) can be at the BGK equilibrium satisfying (19) and (2). Denoting F (Ws)
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as F+
s and F−s respectively for positive (v > 0) and negative (v < 0) velocities,

we have the particle density expressed as

ns(x) =
∫ 0

−∞
fs(x, v)dv +

∫ ∞

0
fs(x, v)dv (21)

=
∫ ∞

qsφ

F−s + F+
s√

2ms(Ws − qsφ)
dWs (22)

The kinetic energy density is also expressed as

Us(φ) =
∫ ∞

−∞

1
2
msv

2fsdv

=
1

2ms

∫ ∞

qsφ

(F−s + F+
s )

√
2ms(Ws − qsφ)dWs (23)

Combining these expressions, we obtain a useful relation valid for the BGK
equilibrium [5].

dUs

dφ
= −qs

2
ns (24)

Poisson’s equation (2) is rewritten as

d2φ

dx2 =
2
εo

d
dφ

∑
s

Us (25)

We multiply the above equation by dφ/dx and integrate over x to obtain

εoE
2
x

2
= 2

∑
s

(Us − Uso) (26)

The integration constant Uso corresponds to an unperturbed kinetic energy den-
sity at infinity where Ex = 0. The equation derived above reveals that the
electrostatic energy density is exactly twice as large as the perturbation of the
kinetic energy at the BGK equilibrium [5].

At the moment of coalescence of two electron holes as shown in Fig. 4, there
arises a stronger electrostatic field because of overlapping of the potentials, ac-
celerating trapped electrons in the potentials. Some of the trapped electrons
become untrapped and move away from the coalesced potential. Thus both elec-
trostatic and kinetic energies of the two electron holes are lost to form a new
electron hole at the BGK equilibrium satisfying (26). Thus, the coalescence is
an irreversible process.

5 Decay of Electron Holes

In a system where normal modes with different phase velocities can exists sta-
bly without much damping, nonlinear potentials excited by the electron beam
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instabilities decay into these normal modes with different phase velocities. An
example is a weak beam instability where an electron beam with a few percent
of the total density is injected into the cold background component as shown
in Fig. 1(c). Because of the absence of electrons between the beam drift veloc-
ity and that of the thermal plasma, Langmuir waves with phase velocities less
than the beam drift velocity are subsequently excited through the quasi-linear
diffusion process. The coherency of the potentials decreases, and the phases of
the normal modes become random. There occurs the quasi-linear diffusion which
leads to a formation of plateau in the velocity distribution function of electrons.

Another example where electron holes decay into other waves is a bi-stream
electron instability with cold ions as shown in Fig. 1(b). The bi-stream electron
beams cause a very strong reactive instability, generating large electron holes
which make the eventual thermal velocity of the electrons very large. By de-
creasing the ion thermal velocity Vti from 0.1Vd to 0.05Vd, we obtained very
different results of long-time evolution of the bi-stream instabilities. In the pres-
ence of the cold ions, ion acoustic waves exist, being free from the ion Landau
damping. The large electron holes decay into the ion acoustic waves . If the ions
are warm, the electron holes exist stably because the ion acoustic waves are sub-
ject to the ion Landau damping. Thus the parameters of ions become critically
important in the long time evolution of the electron holes.

The importance of the ion dynamics can be found in a bi-stream electron
instability with an warm ion beam placed between the two electron beams in
the velocity space. After the initial formation of large electron holes, we find
the electron holes are split into two smaller electron holes moving forward and
backward with respect to the ion beam at rest. As seen in this example, the
electron holes moving with sufficiently large drift velocities with respect to each
other do not coalesce through a collision. In each frame of the reference the drift
energy of the other beam is too large to be trapped by the potential well.

6 Electron Beam Instability in Open Systems

In a system with periodic boundary, beam instabilities take place uniformly in
space, and evolution of the instability can be traced infinitely in time. In real
space plasmas, sources of electron beams or acceleration regions are localized in
space. We study beam instabilities started from a localized point source in this
section. We set up a one-dimensional simulation region consisting of 10,240 grid
points with open boundaries where outgoing waves and particles are absorbed
as if there is no boundary. Thermal particles are injected from both boundaries
to maintain the thermal populations of ions and electrons at rest. From the
left boundary we inject a flux of electrons with a drift velocity Vd and a thermal
velocity Vb = 0.05 so that 5 % of the total electrons from an electron beam in the
velocity phase space. The thermal velocity of the background thermal electrons
is Vte = 0.5Vd. We also put a neutralizing cold ions with a thermal velocity
Vti = 0.005Vd and with a reduced mass ratio mi/me = 100. The number of
superparticles is 1600 per cell for each of electrons and ions.
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The initial velocity and position of a particle injected from the left boundary
with a positve velocity are given by using two uniformly distributed random
numbers 0 < R1, R2 < 1 as shown in the following procedure [2]. The particles
are injected with a flux velocity distribution function given by vf(v), where f(v)
is a velocity distributuion function for a species of particles.

v = F−1(R1) (27)

x = R2v
Δt

2
(28)

where

R1 = F (v) ≡
∫ v

0 v
′f(v′)dv′∫ vmax

0 v′f(v′)dv′
. (29)

When a computer simulation is started, the electron beam is continuously in-
jected from the left boundary of the simulation box into the background homoge-
neous plasma. We inject particles with the constant flux, while exiting particles
are removed at the open boundaries. The electrostatic fields at the open bound-
aries are determined by the distribution of charged particles without any special
numerical treatments. We first compute the charge density distribution at the
open boundaries. Then we solve Poisson’s equation to obtain the electrostatic
potential and the electrostatic field.

As we found in the uniform periodic system an electron beam on a high en-
ergy tail of the warm plasma can generate electron holes as shown in Fig. 5. The
electron holes impinge into the unperturbed plasma without significant distur-
bances and propagate stably for a long distance. This implies that the electron
holes are formed essentially by dynamics of trapped electrons rather than that
of untrapped resonant electrons that pass through the electron holes. Contrary
to the case of the bi-stream instability with cold ions, the excited electron holes
does not decay into ion acoustic waves. This is because the amplitude of the
electron holes are small enough to couple with the cold ions at rest.

When the same electron beam is injected into the cold plasma, however, the
large electrostatic potentials excited by the weak beam instability rapidly decay
into Langmuir waves with smaller phase velocities. Contrary to the uniform
system, the top portion of electron beam with the largest positive velocity moves
into the unperturbed plasma. The diffused parts with smaller phase velocities
follow the top portion with some time delays. This keeps the top part of the
electron beam unstable to the weak-beam instability, although the growth rate
decreases because of the decreasing density of the beam.

7 Nonlinear Evolution in Two-Dimensional System

In the preceding sections, we have studied beam instabilities in the one-dimens-
ional system taken along the static magnetic field. Since the growth rates of the
electron beam instabilities maximize in the parallel direction, the one-dimensional
model is valid at the initial stage of the nonlinear wave-particle interaction. In
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Fig. 5. Spatial evolution of the bump-on-tail instability in the one-dimensional open
system [13]. The x − vx phase diagrams at Πet = 100, 200, 400 and 1000, respectively.

a two-dimensional periodic system with a spatial dimension perpendicular to
the static magnetic field, the one-dimensional ESW can couple with the wave
modes propagating in oblique directions when the following resonance condition
is satisfied.

ω

k cos θ
= Vd (30)

where θ is an angle between the wavenumber vector k and the static magnetic
field B. The velocity Vd is the drift velocity of ESW. The left-hand-side is the
phase velocity of the oblique mode parallel to the static magnetic field. (See
Fig. 6).
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Fig. 6. Schematic drawing of coupling between two-dimensional potentials drifting
parallel to the magnetic field B and low frequency waves propagating in a oblique
direction [10].

When the resonance condition is satisfied, there develops a modulation of
the one-dimensional potential structures excited by the electron beam instabil-
ity, leading to a formation of two-dimensional potential structures [10]. The soli-
tary potentials also work as fast moving charged particles, from which obliquely
propagating whistler mode waves are generated [6]. In an open system where the
source of the electron beam is localized, however, the top portion of the electron
beam impinging into an unperturbed plasma is free from the oblique modes,
because their group velocities are much smaller than that of the electron beam.
Only in the localized region close to the source of the electron beam, we find cou-
pling of ESW with the lower hybrid waves [15]. The localized two-dimensional
and three-dimensional structures of solitary waves and their efficiency for elec-
tromagnetic wave radiation are subjects of the on-going studies.
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Kinetic Simulation of Inhomogeneous Plasma
with a Variable Sized Grid System
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Abstract. Space plasmas are usually inhomogeneous and irregular. Particle in cell
(PIC) plasma simulations, however, often consider the plasma to be homogeneous and
periodic. Here non-periodic PIC simulations with inhomogeneities in the density, tem-
perature and background magnetic field are considered. Boundary conditions and a
variable sized grid system are discussed, along with an application to a magnetospheric
plasma physics problem in the auroral zone.

1 Introduction

Particle in cell (PIC) simulations have been used to simulate plasmas since the
early 1960’s [10]. The basic idea behind PIC simulations is to follow charged
particles self-consistently in some region of space as they move according to
the Lorentz force equation and the fields evolve per Maxwell’s equations. The
practice and use of standard PIC simulations has been well documented over
the years [7]. In most cases, to resolve the plasma a finite regular grid and time
step are used.

PIC codes are not the only way to simulate space plasmas and there are nu-
merous other types of self-consistent simulations that treat the plasma according
to some approximation. This includes fluid codes using the magnetohydrody-
namic (MHD) method [22], hybrid models whereby ions are treated as particles
and electrons as a fluid [42], and Vlasov codes whereby the distribution functions
evolve according to the Vlasov equation [20],[32]. A discussion of some of these
codes and their applications to space plasmas can be found in the proceedings
of the Second and Third International School of Space Simulations [44],[45].

Here only PIC simulations will be considered, and in particular the workings
and use of inhomogeneous and non-periodic codes will be discussed. Although
some basic tenets of PIC simulations will be presented here, the focus will be on
the application of variable grid spacing and non-periodic boundary conditions.
For a complete description of basic PIC codes, the reader is referred to [7],[11]
and the references cited there.

This paper is structured as follows. In the next section is a discussion of
why inhomogeneous and non-periodic systems are needed. In Sect. 3 a scheme
for incorporating variable grids into PIC simulations is presented, followed in
Sect. 4 by a discussion of non-periodic boundary conditions. An example of a
PIC simulation code with variable grids and non-periodic boundary conditions
applied to the auroral zone is given in Sect. 5. Conclusions and future directions
are found in Sect. 6.
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2 Why Non-periodic and Inhomogeneous Systems?

Particle in cell simulations are an excellent tool for examining instabilities and
wave-particle interactions in a plasma. Since the Lorentz equation is used to push
many (up to several million) charged particles according to either the full or a
reduced set of Maxwell’s equations, in principle all of the normal plasma wave
modes, as well as linear and non-linear interactions are naturally included. Many
applications consider a beam driven instability or some other type of anisotropy
in a uniform, periodic system. Finite grid systems and time steps are used in most
PIC codes and a periodic system allows the equations to be solved in Fourier
transform space, which in general is a fast, relatively easy way of simulating
a plasma. Such simulations can allow an identification of plasma wave modes
excited in the system and an understanding of wave saturation mechanisms.

Satellite observations in space, however, usually find that the plasma is not
uniform. There are often gradients and shear flows such as that found at the mag-
netopause boundary layer between the solar wind and the Earth’s magnetosphere
[1],[12],[27] at the plasma sheet boundary layer in the magnetotail [13],[15],[16]
and at times in the plasma sheet itself [4],[6],[24], to name only a few. These
gradients can occur in both particle and field profiles. Another, somewhat more
gradual non-uniform system occurs where the cool, dense, highly magnetized
plasma of the ionosphere near the Earth gives way to the warm, tenuous, weakly
magnetized plasma in the magnetotail plasma sheet at high altitudes.

Since PIC simulation scale lengths are in most cases determined by the elec-
tron Debye length (e.g., [7]), system sizes are often relatively small (i.e., kilome-
ters) compared to observed spatial scales (∼ one Earth radii, where 1 RE = 6371
km). In many cases the use of periodic, uniform systems that simulate a very
small region of space is a reasonable approximation. But the rapid increase in
computing speed and relatively large amounts of memory now available have
allowed simulations with more grid points and much larger system sizes to be
carried out. Since satellite observations show the magnetosphere to be spatially
and temporally non-uniform over RE spatial scales (or less) and since the various
regions depend on one another dynamically, large-scale PIC simulations must be
non-uniform and non-periodic.

3 Simulations with Irregular Grid Systems

In most Cartesian PIC simulation systems the grid spacing is regular, i.e., evenly
spaced. In non-Cartesian systems the grid spacing can be irregular (e.g., [7]).
Here we consider a system that has a gradual variation in density, temperature,
and magnetic field over thousands of kilometers such as in the auroral zone. To
examine the plasma physics of such a system, an irregular grid, non-periodic
simulation is employed. Observed plasma conditions in the auroral region deter-
mine the simulation system. The auroral zone is characterized by a transition
from the relatively low density, warm, magnetotail plasma in a weakening dipole
magnetic field at high altitudes to a region near the Earth in the ionosphere
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where the plasma is cold, dense and the magnetic field is strong. The variation
in plasma density and temperature can be several orders of magnitude from
the ionosphere located at a few hundred kilometers altitude to the magnetotail,
which begins at an altitude of several Earth radii and beyond. The auroral zone
sits between these regions at a few thousand to tens of thousands of kilometers
altitude and is distinguished by field-aligned and transverse particle acceleration,
intense wave activity of various kinds, and quasi-static electric fields. A source of
free energy in the form of field-aligned currents, Alfven wave Poynting flux, and
particle beams flow from the magnetotail towards the ionosphere and drive the
auroral region’s dynamic behavior. To model this region as a whole, a PIC sim-
ulation must stretch from the high altitude magnetosphere to the low altitude
ionosphere and include a source of free energy that flows into the system.

An example of a PIC simulation model of the auroral zone is described here
(results from the code are presented in Sect. 5). To model a large portion of
the auroral zone a spatial system with a length as large as or greater than an
Earth radii (> 6300 km) is needed. A one-dimensional system will be considered
with a system axis aligned along the Earth’s dipole magnetic field, which near
the Earth is approximately equivalent to altitude. Figure 1 shows schematically
the location of the simulation system with respect to the Earth along with the
magnetic field profile assumed. To achieve a system length of an RE or more
for this plasma configuration, tens of thousands of grid points are used. For the
simulations discussed here, 50,000 grid points is the minimum number used and
runs with up to 100,000 grid points have been used.

Standard practice in PIC simulations is to divide the spatial system over
which the particles move into a number of equally spaced grid cells. Although the
particle position is continuous over the system, particle density and current are
calculated only at the grid points, which is also where the electric field values are
calculated from Poisson’s equations. Field values are then extrapolated from the
grid to the particle location to push the particles. It has been shown rigorously
that in order to avoid non-physical heating and other spurious effects due to the
use of finite sized grid cells, the size of each grid should be set approximately
equal to the electron Debye length (e.g., [7]). The electron Debye length λe is
given by:

λe =

√
kBTe

4πneq2
(1)

The parameters are the electron temperature Te, the electron density ne, Boltz-
mann’s constant kB and the charge q. A problem in simulating the auroral zone
deals with treating a plasma that is dense and cold, and thus has a small Debye
length, in one part of the system, while in another part of the system the plasma
is tenuous and warm with a relatively large Debye length. To deal with this a
variable grid system has been employed. In the auroral zone the density and
temperature, according to observations, depend on altitude (r) approximately
as [19]:

n(r) = n0e
−(r−r0)/h + 17(r − 1)−1.5 (2)
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Fig. 1. Schematic representation of a simulation system that models the auroral region.
The Earth is shown at the lower right and the thin line represents a 70◦ magnetic field
line. The thicker line shows the region being modeled using the PIC simulation, which
is expanded in the upper left part of the figure.

T (r) = T1e
r/h0 + T0 (3)

The different parameters such as r0, h0, T1, T0, and n0 are various scale heights,
base temperatures and base densities whose exact numerical values are not im-
portant for this discussion. Number values based on observations can be found in
[19]. The main point to be emphasized here is that the density tends to decrease
exponentially with altitude while the temperature increases exponentially with
altitude. These combined effects thus lead to an overall increase in the electron
Debye length with altitude.

The auroral simulation system is set up such that the size of the first grid
cell (denoted by Δ1) has a length determined by the Debye length at the lowest
altitude portion of the system where λe(r = r0) = λe0. For the simulation runs
discussed here the base altitude r0, is set to 1000 km. The size of the jth grid
cell is normalized such that Δj = λe(rj−1)/λe0, and thus Δ1 = λe(r0)/λe0 = 1.
To determine the size of the second cell, first the position is determined (i.e.,
r1 = r0 + λe0) from which the Debye length λe(r1) is determined using the
above density and temperature profiles given by equations (2) and (3), and then
Δ2 = λe(r1)/λe0. The next position r2, is then determined from the equation
r2 = r1 + λe(r1) and then the size of the third grid (Δ3) is calculated, and
the procedure continues on until the boundary at the high altitude end of the
system is reached (which depends on the number of grid points used). Note that
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Fig. 2. An irregular grid system is shown whereby the grid size increases according to
the local electron Debye length, which increases along the system axis (corresponding
to an increasing altitude in the auroral zone with x = r). Discrete quantities are shown
above the horizontal axis and continuous quantities are shown below the axis.

the size of each succeeding grid increases (i.e., Δj+1 > Δj) and thus the grid
size is larger at higher altitudes where the corresponding local Debye length is
larger. This grid scheme is illustrated schematically in Fig. 2. The system length
is L =

∑
Δj (for j = 1 to N), which for the density and temperature profiles

discussed above and about 50,000 grid points equals a distance of about 1 RE .
The grid size at the high altitude end of the system is about 10 times that at
low altitudes in the ionosphere (ΔN/Δ1 ≈ 10).

Once the variable sized grid system has been constructed according to the
method illustrated in Fig. 2, the particles are then loaded in space. This is done
by taking the number of particles per grid to be constant (typically 50 or 100
particles per grid) and then distributing the particles in space uniformly across
each grid. For example, 50 particles per grid has been used in many of the auroral
simulation runs. Thus groups of 50 particles are given a position equally spaced
across each of the 50,000 grids (giving a total of 2,500,000 particles of one species,
either ions or electrons). Since the grid size gets larger with system length, the
density (particle number per grid length, i.e., 50/Δj) decreases. In the system
described above the grid size increases exponentially with altitude and thus the
density, using an equal number of particles per grid, decreases exponentially.
The end effect is that of a dense plasma at low altitudes at the left end of the
system that decreases in density exponentially giving way to a tenuous plasma
at higher altitudes at the right end of the system.

When the particle positions are determined, the velocities are also deter-
mined using the temperature profile given by equation (3). This is done using a
standard Maxwellian random number generator for each particle’s velocity and
multiplying it by a thermal velocity factor that depends on position. Using the
temperature profile in equation (3) results in a plasma that has an increasing
temperature along the length of the simulation system. An example of the sim-
ulation density and temperature profile described here will be given in Sect. 5
and shown in Fig. 4.

An equal number of particles of both species (ions and electrons) are loaded
in configuration and velocity space as described above. For each electron, an
ion is loaded at the same position (although obviously the charge state, mass
and velocity are different), assuring exact charge neutrality initially within the
system. Thus for the typical system parameters given above (50 particles per
grid and 50,000 grids), a total of 5,000,000 particles are followed in the system
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with exactly half of the particles being electrons and the other half being ions.
Typical ion to electron mass ratios used for the runs here are 250 or 400.

The present version of the code is electrostatic and thus Poisson’s equation
is solved to find the electric field:

∇ · E = 4πρ (4)

The charge density is given by ρ. In the simulation the normalized electric field
(Ẽ) is found at each grid point (j) using finite differencing, i.e.,

Ẽj+1 = Ẽj + Cρ̃j (5)

Here C is a constant normalization factor given by the inverse of the number of
particles per grid (e.g., 1/50). The normalized charge density at each grid point
(ρ̃j) is found by summing up the contribution of all the particles near that grid
point, where a particle’s contribution is a linear fraction of its total charge (= 1)
distributed to the two nearest grid points based on the particle position between
the two grid points. To solve (5), the electric field must be specified at one of the
boundaries. In the auroral simulations, the electric field is taken to be zero in the
magnetosphere such that ẼN = 0, or equivalently at the right hand boundary
of the system E(x = L) = 0.

One complication that arises when dealing with variable sized grids is find-
ing the two grid points nearest the particle based on the particle position. In
a uniform grid system all of the grid sizes are equal and can be set to 1 (i.e.,
Δj = Δ = 1). In this simple case the spatial position within the system is easily
related to the grid number and finding the nearest grid points for a particular
particle location is trivial. For example, in Fig. 2, if the grid spacing were taken
to be uniform with Δ = 1, a particle located at x = 10.12 would be nearest the
grid points corresponding to j = 11 and j = 12. In a variable grid system this
is no longer necessarily true. Thus a routine is needed to determine the particle
position in a non-uniform grid system. Fortunately “locating” subroutines which
use the bisection method to search an ordered table can be found in texts on
numerical methods. The specific subroutine used here is called HUNT, (subrou-
tine listing is given on page 91 in [33]), which is advantageous when searching a
table many times that has nearly identical abscissas on consecutive searches.

Once the grid points nearest the particle positions have been found, a funda-
mental limit on the time step (Δt) for stability of PIC codes works to the benefit
of finding the two nearest grid points for the particles on each succeeding time
step. This fundamental limit, known as the Courant condition [7],[33], states
that a particle should not move more than one grid length in a time step (i.e.,
vΔt < Δ, where v is the particle velocity). Thus the nearest grid points for a
particle can be found by keeping an auxiliary array that stores the nearest grid
point at the initial time step, and then at each succeeding time step the nearest
grid points will either be the same or change by at most one grid. This limits
the search required to find the nearest grid points to either one or two steps and
does not require a search over the entire grid system. If the nearest grid point
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changes in a time step, the array value is updated for the next search on the
next time step.

Another issue to deal with in a variable grid system is finite particle size. In
most PIC codes, particles are given a finite size to reduce the noise caused by
close Coulomb collisions and it has been shown that good results are obtained
when the simulation particle is set equal to the grid size [7],[11]. In a variable
grid system, since the grid size changes, the particle size will change as it moves
around the system to match the local grid size. The grid size variation considered
here is slow and monotonic ranging over thousands of grid points. Thus any
particle traversing the system will see its size change slowly in space and time.
The amount of charge on each particle however does not change and thus the
contribution of a particle in the charge density to the two nearest grids will
proportionally be the same regardless of location. Although the notion of a
simulation particle that changes size depending on location might seem odd,
keep in mind that the use of finite size particles is a numerical technique to keep
the noise level low in PIC simulations.

We now look at two simulation runs where one run uses a variable sized grid
system and the other uses a uniform sized grid system. The electron temperature
time history for these two cases is shown in Fig. 3. The results for the two different
runs clearly show that for a uniform grid system the cool plasma heats up due
to finite grid size effects since the local Debye length does not match the grid
size [7]. The variable grid system where the local grid size matches the Debye
length clearly shows the elimination of the non-physical heating.

4 Non-periodic Boundary Conditions

Specific non-periodic boundary conditions are determined by the physical prob-
lem that is to be simulated. For example, to study the physics of shocks, beam
injection at one end of the system and a reflection boundary condition at the
other end of the system have been used in PIC codes (e.g., [3],[14]). Another
set of PIC simulations applied to study active experiments near spacecraft has
used beam injection along with various types of charged boundary conditions
[5],[26],[41]. PIC simulations of the magnetotail that focussed on convection [30]
and reconnection [31] also had to invoke a particular set of boundary conditions
such as inflow from top and bottom and outflow or reflection at the sides, to
examine the physical problem at hand. In these and other cases, the boundary
conditions and system setup are determined by the problem being addressed.

For the auroral zone simulation considered here it is the satellite observations
that determine how to treat the boundaries. For example, below the low altitude
end of the simulation system (i.e., < 1000 km altitude) is the ionosphere. The
ionosphere can be treated in one sense as a large reservoir of cold, dense plasma.
Thus the particle boundary condition used here is that of a “cold reflector”.
What this means is that any particle that hits the low altitude boundary at
x = 0 is reflected and given a return velocity based on a Maxwellian distribu-
tion with the temperature at x = 0. As discussed in Sect. 3, the temperature
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Fig. 3. This plot shows the electron temperature time history for two different simu-
lation runs, one with a fixed grid size system and the other with a variable grid size
system. For both simulation runs the plasma is initially loaded such that cool plasma
is located at one end of the system and warmer plasma is located at the other end of
the system. The case with variable grid points is set up such that the grid size approx-
imately equals the local electron Debye length throughout the system, while the case
with a fixed grid size sets the grid size equal to the Debye length of the warm plasma
throughout the system.

follows a profile given by equation (3) and thus the reflected particle is given
the temperature at r = 1000 km altitude. This condition is equivalent to replac-
ing a precipitating particle with a cold ionospheric particle in its place. Thus if
higher energy particles hit the low altitude boundary, energy can be lost from
the system to the ionosphere. Note that this is a closed boundary condition in
the sense that no particles are lost or removed from the system.

The high altitude end of the simulation system (x = L) is connected to the
Earth’s magnetotail plasma sheet, which in contrast to the ionosphere is a source
of warm, energetic plasma with relatively low density. Since it is assumed that the
magnetotail plasma sheet provides free energy to drive auroral dynamics, beam
injection is included at the high altitude boundary. Specifically, new particles
are introduced at x = L with a negative beam drift velocity such that they
move from right to left for the system setup shown in Fig. 2. A zero-current
beam is injected meaning that both an ion and electron enter the system at
the same time with the same net drift velocity. Any particles from inside the
system that hit the high altitude boundary at x = L are reflected back into the



Simulating an Inhomogeneous Plasma 101

system. Note that for these boundary conditions (cold reflection at x = 0 and
standard reflection at x = L) and the injection of a zero-current beam at x = L,
there are always an equal (but increasing) number of electrons and ions in the
system throughout the simulation run. The beam injection velocities for ions
and electrons are based on satellite observations and a number of different beam
speeds have been tried. Recent Polar satellite observations indicate that large
amplitude Alfven wave Poynting fluxes flow from the magnetotail into the auroral
zone [43] and represent another free energy source for auroral processes. Future
simulations will consider plasma wave injection at the high altitude boundary.

Another set of boundary conditions now being considered for the auroral PIC
simulations are to include a net current across the system. This is dictated by
satellite observations that show field aligned currents flowing either towards or
away from the Earth in the auroral zone (e.g., [8]). The boundary conditions
discussed above are such that charge neutrality is strictly conserved over the
entire system and there is no net gain or loss of charge. This includes the injected
beam particles in the sense that ion and electron beam speeds are set equal and
there is a net zero current inflow (or outflow) across the system boundary. This
condition needs to be relaxed in light of satellite observations in the auroral zone
and there are various ways of doing this. One way is to inject ions and electrons
with a different net drift from the magnetotail boundary. This has been done
in two ways, one where an equal number of ions and electrons are input at the
boundary but they are given a different drift speed. Although this allows the
current to be non-zero within the system, there is no build up of charge and
thus no flow of current across the boundary. The result is that while current-
driven instabilities can be examined, fields due to an excess of charge and the
redistribution of the plasma in the system is not included. Runs have also been
performed whereby more electrons flow into the system creating a field-aligned
current and a resulting charge imbalance. The difficulty comes in allowing the
charge buildup to be alleviated through the loss of (certain) charged particles at
either boundary providing a field-aligned current through the entire system from
magnetotail to ionosphere. Various possibilities are presently being considered to
handle this situation, including the inclusion of an electric potential drop being
imposed across the system based on a current-voltage relationship appropriate
to the auroral zone [21].

5 Example of Irregular Grids
and Non-periodic Boundaries: The Auroral Zone

We now consider in detail the PIC simulation code described in the previous
section applied to the auroral zone. The auroral zone is a very active region and
is characterized by plasma acceleration, wave-particle interactions and quasi-
static parallel electric fields. Questions that remain to be answered in the auroral
zone include how quasi-static parallel electric fields are formed, what is the role
of wave-particle interactions and ultimately what is the free energy source for
the precipitating particles. To examine some of these issues the auroral PIC
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simulation has been employed. To illustrate how the code works some of the
results will be presented here (see [34] for more details).

A mechanism that can lead to quasi-static parallel electric fields in the auroral
zone is the magnetic mirroring of ion and electron distribution functions at
different altitudes as a result of an anisotropy in the plasma sheet [2],[29]. Many
static models of the steady-state auroral electrostatic potential in the primary
current region are based on this premise [9],[17],[23],[39],[40]. A particular type
of anisotropy that can generate upward directed quasi-static electric fields are
earthward streaming ion beams that originate from the magnetotail [17],[18].
This case is considered here.

To study the self-consistent formation of parallel electric fields in the auro-
ral zone, the PIC simulation code with variable grid spacing and non-periodic
boundary conditions as described in the previous sections is used. For the cases
discussed here only electrostatic processes are considered and the code is one-
dimensional along an auroral magnetic field line. An additional feature of the
code not already discussed is the presence of the mirror force. This is impor-
tant because closer to the Earth the magnetic field strength increases due to the
Earth’s dipole and for charged particles the mirror force can play an important
role over distances of thousands of kilometers. The equation of motion used to
push the ions and electrons in the system for electrostatic waves in the presence
of the mirror force is given by:

ma = qE − μ∇‖B −mg (6)

The electric field is given by E, the particle mass is given bym, μ is the magnetic
moment, g represents gravity and ∇‖B is the parallel gradient of the terrestrial
magnetic field (i.e., the mirror force term). A background of cold dense plasma
that represents the ionosphere is loaded at the low altitude end of the simulation
box as discussed in Sect. 3 and the system is driven by warm tenuous anisotropic
ion and electron particle distribution functions injected at the high altitude end
of the system. The magnetic field goes as a dipole along the magnetic field
direction, which is the same as the simulation axis, such that B(x) goes as
1/x3. The magnetic moment of each particle is calculated at t = 0 using μ =
W⊥/B(x), based on the particle’s initial x position (W⊥ is the perpendicular
energy). Adiabatic invariance is assumed such that μ is constant for every particle
throughout the simulation run. A schematic of the simulation system and its
location in the auroral zone was shown in Fig. 1.

The run presented here will consider a beam of ions and electrons from the
high altitude magnetotail end of the system. This simulates earthward streaming
plasma in the Earth’s plasma sheet boundary layer (PSBL) and represents a free
energy source for the auroral zone. Ion and electron beams are a common fea-
ture of the PSBL [13],[15],[16],[28] and are a possible driver of auroral processes
[18],[25],[38].

Figure 4 shows the initial phase space for the protons in the top panel, the
electrons in the middle panel and the density and magnetic field profiles in the
bottom panel. The ion phase space (top panel of Fig. 4) shows the incoming
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Fig. 4. This plot shows the intial phase space of protons and electrons in the top two
panels and the initial density and magnetic field profile in the bottom panel. These
quantities are shown along the simulation (horizontal) axis, which is equivalent to
altitude. The phase space diagrams show velocity normalized to their respective thermal
velocities along the vertical axis. The color code is such that red represents regions of
higher phase space density and blue corresponds to lower phase space densities.

ion beam flowing from the right into the ionospheric background. Here there is
no net current thus the electrons and ions have the same drift speed (Ui = Ue),
however, the velocities in Fig. 4 are shown relative to the species thermal velocity.
Since Ue/vte < 1, the beam is less apparent for electrons. Another item to notice
in Fig. 4 is that the plasma density is high and the plasma is cooler at lower
altitudes at the left end of the simulation system.
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Fig. 5. Snapshots of the proton phase space at four different times are shown. The
initial configuration at the beginning of the run is shown in the upper left panel, and
the bottom right panel shows the results near the end of the simulation run. The black
line running across the system is the electrostatic potential in kilovolts at that time.

Figure 5 shows the ion phase space and the average electrostatic potential at
four different times during the run. As time progresses the ion beam in Fig. 5
can be seen streaming earthward (from right to left) and interacts with both the
background ionospheric ions and with an increasing magnetic field (mirror force)
that tends to repel the incoming ions. Over time a potential drop (shown by the
black solid line) forms due to a net charge separation between the inflowing ions
and electrons [2],[29]. This charge separation is caused by the mirror force and
the anisotropy (beam) of the injected plasma [34],[37].

The strength of the potential drop is a function of the injected drift speed
of the ions [38]. This is borne out in Fig. 6, which shows the average (over the
course of the run) electrostatic potential across the system for three runs with
different inflow beam speeds. It can seen in Fig. 6 that the higher the drift speed
the larger the potential (given in kilovolts). This makes intuitive sense since
a larger beam speed implies more free energy being pumped into the system.
Physically the larger drift speed means a larger charge separation between the
ions and the electrons, and hence a larger potential drop.

The last result to be discussed from this set of PIC simulation runs is the
generation of plasma waves within the simulation system. Because beams are
present and there is thermal mixing of plasmas, it is expected that instabilities
will result. This is illustrated in Fig. 7, which shows color-coded wave power
with frequency versus the system length. One result immediately apparent in
Fig. 7 is the intense wave activity excited at low frequencies in the mid-altitude
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Fig. 6. This plot shows the average electrostatic potential across the simulation system
for three different simulation runs with different inflow beam speeds (shown at the
right). The potential is time averaged over the entire run and is shown in kilovolts
versus altitude (in km) along the simulation system.

range (∼ 4000 km) where the injected beam plasma from the magnetotail (at the
right) interacts with the cool ionospheric plasma (at the left). These are likely
to be ion-ion acoustic waves excited by the injected ion beam [34]. Another
interesting feature in Fig. 7 is the presence of local electron plasma oscillations,
which can be seen by the enhancements at higher frequency that are highest at
low altitudes (1000 km) and tend to decrease in frequency with altitude. This
decreasing frequency profile is simply due to the decrease in ionospheric density
that was initiated in the system. For more details concerning this simulation
code and results discussing the implications for the auroral zone, the reader is
referred to [34],[35],[36],[37].

6 Conclusions

Particle in cell simulations with variable sized grid cells and non-periodic bound-
ary conditions have been discussed here with results presented for a model of
the auroral zone. As the spatial domain in PIC simulation systems grow in size
covering different regions in space plasmas, variable grid configurations will be
become a necessary element to capture the essential physics. The PIC simulation
presented here to model the auroral zone is relatively simple in the sense that
it is one dimensional and electrostatic, yet it yielded valuable results pertaining
to the formation of quasi-static parallel potential drops and the effects of wave-
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Fig. 7. This plot shows an electric field wave spectogram with frequency plotted versus
system length. The plot is color-coded in wave power with red representing higher
electric field intensity and blue lower electric field intensity. The frequency (vertical
axis) is normalized to the electron plasma frequency at 1000 km.

particle interactions. Even such a simplified version of the code (one dimension,
electrostatic), however, can be computationally demanding. For example, the
run presented in Sect. 5, which used about 50,000 grid points, 5,000,000 total
particles and was run about 1,500,000 time steps, required a total of nearly 1300
hours of computing time on a Cray T90.

The physics of the auroral zone ultimately demands higher dimensional, elec-
tromagnetic simulations, which will be the next step. In general this will be the
case in other regions of space as well. Fortunately computing speed and available
memory have increased dramatically in the last few years and such systems are
now feasible from a computational point of view. It seems clear that, at least
for the auroral zone, an effective two dimensional system will have to be non-
Cartesian to allow for the needed resolution and variable grid spacing required
to model the plasma. This will surely present a new set of challenges for the grid
sizing and the boundary conditions to be tackled in the future.

Acknowledgements

The author wishes to thank M. Ashour-Abdalla and R. Richard for their con-
siderable help over the course of this entire project. This work was supported
by NASA Guest Investigator Grant NAG5-10473, NASA ISTP Grant NAG5-
11704 and NSF Grant INT-0010111. Computing resources were provided by the



Simulating an Inhomogeneous Plasma 107

National Partnership for Advanced Computing Infrastructure (NPACI) and in
particular the San Diego Supercomputing Center (SDSC).

References

1. S.I. Akasofu, E.W. Hones, Jr., S.J. Bame, J.R. Asbridge, A.T.Y. Lui: J. Geophys.
Res. 78, 7257 (1973)

2. H. Alfven, C.G. Falthammer: Cosmical Electrodynamics (Clarendon, Oxford 1963)
3. C.H. Aldrich: Space Sci. Rev. 42, 131 (1985)
4. V. Angelopoulos, T.D. Phan, D.E. Larson, F.S. Mozer, R.P. Lin, K. Tsuruda, H.

Hayakawa, T. Mukai, S. Kokubun, T. Yamamoto, D.J. Williams, R.W. McEntire,
R.P. Lepping, G.K. Parks, M. Brittnacher, G. Germany, J. Spann, H.J. Singer, K.
Yumoto: Geophys. Res. Lett. 24, 2271 (1997)

5. M. Ashour-Abdalla, H. Okuda: Adv. Space Res. 8, (1)137 (1988)
6. W. Baumjohann, G. Paschmann, H. Luhr: J. Geophys. Res. 95, 3801 (1990)
7. C.K. Birdsall, A.B. Langdon: Plasma Physics Via Computer Simulations

(McGraw-Hill, New York 1985)
8. C.W. Carlson, J.P. McFadden, R.E. Ergun, M. Temerin, W. Peria, F.S. Mozer,

D.M. Klumpar, E.G. Shelley, W.K. Peterson, E. Moebius, R. Elphic, R. Strange-
way, C. Catell, R. Pfaff: Geophys. Res. Lett. 25, 2017 (1998)

9. Y.T. Chiu, J.M. Cornwall: J. Geophys. Res. 85, 543 (1980)
10. J.M. Dawson: Phys. Fluids 5, 445 (1962)
11. J.M. Dawson: Rev. Modern Phys. 55, 403 (1983)
12. T.E. Eastman, E.W. Hones, Jr., S.J. Bame, J.R. Asbridge: Geophys. Res. Lett. 3,

685 (1976)
13. T.E. Eastman, L.A. Frank, W.K. Peterson, W. Lennartsson: J. Geophys. Res. 89,

1553 (1984)
14. D.W. Forslund, K.B. Quest, J.U. Brackbill, K. Lee: J. Geophys. Res. 89, 2142

(1984)
15. L.A. Frank, K.L. Ackerson, R.P. Lepping: J. Geophys. Res. 89, 5859 (1976)
16. E.W. Hones, Jr., J.R. Asbridge, S.J. Bame, M.D. Montgomery, S. Singer, S.-I.

Akasofu: J. Geophys. Res. 77, 5503 (1972)
17. J.R. Kan: J. Geophys. Res. 80, 2089 (1975)
18. J.R. Kan, S.I. Akasofu: J. Geophys. Res. 81, 5123 (1976)
19. C.A. Kletzing, R.B. Torbert: J. Geophys. Res. 99, 2159 (1994)
20. A.J. Klimas: J. Geophys. Res. 88, 9081 (1983)
21. S. Knight: Planet. Space Sci. 21, 741 (1973)
22. J.N. LeBoeuf, T. Tajima, C.F. Kennel, J.M Dawson: Geophys. Res. Lett. 5, 609

(1978)
23. J. Lemaire, M. Scherer: Planet. Space Sci. 22, 1485 (1974)
24. A.T.Y. Lui: ’Micro/Mesoscale coupling in the magnetotail current sheet: Obser-

vations’. In: Cross-Scale Coupling in Space Plasmas, Geophys. Mono. Ser. 93, ed.
by J.L. Horwitz, N. Singh, J.L. Burch (American Geophysical Union, Washington,
D.C. 1995) pp. 261

25. L.R. Lyons: ’Discrete auroras and magnetotail processes’. In: Auroral Physics, ed.
by C.-I. Meng, M.J. Rycroft, L.A. Frank (Cambridge University Press, New York
1991) pp. 195

26. H. Okuda, R. Horton, M. Ono, M. Ashour-Abdalla: Phys. Fluids 30, 200 (1987)



108 David Schriver

27. G. Paschmann, G. Haerendel, N. Sckopke, H. Rosenbauer, P.C. Hedgecock: J. Geo-
phys. Res. 81, 2883 (1976)

28. G.K. Parks, M. McCarthy, R.J. Fitzenreiter, J. Etcheto, K.A. Anderson, R.R.
Anderson, T.E. Eastman, L.A. Frank, D.A. Gurnett, C. Huang, R.P. Lin, A.T.Y.
Lui, K.W. Ogilvie, A. Pedersen, H. Reme, D.J. Williams: J. Geophys. Res. 89,
8885 (1984)

29. H. Persson: Phys. Fluids 6, 1756 (1963)
30. P.L. Pritchett, F.V. Coroniti: J. Geophys. Res. 100, 23551 (1995)
31. P.L. Pritchett: J. Geophys. Res. 106, 3783 (2001)
32. D. Potter: Computational Physics (Wiley, New York 1973)
33. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes:

The Art of Scientific Computing (FORTAN Version) (Cambridge University Press,
Cambridge 1989)

34. D. Schriver: J. Geophys. Res. 104, 14655 (1999)
35. D. Schriver, M. Ashour-Abdalla: Geophys. Res. Lett. 20, 475 (1993)
36. D. Schriver, M. Ashour-Abdalla: ’Particle acceleration in the auroral zone: Com-

parison of simulations with observations’. In: Physics of Space Plasmas (1998),
No. 15, ed. by T. Chang, J.R. Jasperse (MIT Center for Theoretical Geo/Cosmo
Plasma Physics, Cambridge 1998) pp. 301

37. D. Schriver, M. Ashour-Abdalla, R.L. Richard: Phys. Chem. Earth (C) 26, 65
(2001)

38. Y. Serizawa, T. Sato: Geophys. Res. Lett. 11, 595 (1984)
39. D.W. Swift: J. Geophys. Res. 80, 2096 (1975)
40. E.C. Whipple: J. Geophys. Res. 82, 1525 (1977)
41. R.M. Winglee, P.L. Pritchett: J. Geophys. Res. 92, 6114 (1987)
42. D. Winske, M.M. Leroy: ’Hybrid simulation techniques applied to the Earth’s bow

shock’, In: Computer Simulations of Space Plasmas, ed. by H. Matsumoto T. Sato
(D. Reidel Terra, Hingham, Mass. 1984)

43. J.R. Wygant, A. Keiling, C.A. Cattell, M. Johnson, R.L. Lysak, M. Temerin, F.S.
Mozer, C.A. Kletzing, J.D. Scudder, W. Peterson, C.T. Russell, G. Parks, M.
Brittnacher, G. Germany, J. Spann: J. Geophys. Res. 105, 18675 (2000)

44. M. Ashour-Abdalla, D.A. Dutton (Eds.): Space Plasma Simulations (D. Reidel,
Dordrecht 1985)

45. B. Lembege, J.W. Eastwoood (Eds.): Numerical Simulation of Space Plasmas (El-
sevier, Amsterdam 1988)



Low Noise Electrostatic and Electromagnetic
Delta-f Particle-in-Cell Simulation of Plasmas

Richard D. Sydora

Department of Physics, University of Alberta, Edmonton, Canada T6G 2J1

Abstract. This paper presents a method for performing efficient and accurate par-
ticle simulations of weakly growing instabilities found in both laboratory and space
plasmas. This low noise technique is based on a particle-in-cell (PIC) formulation of
the equations for the perturbed plasma charged particle distribution function. This
technique substantially reduces the number of particles one needs for discrete sampling
since only the perturbed distribution is represented by particles. In this work results
of simulations are presented from several classes of electrostatic and electromagnetic
instabilities driven by velocity space nonuniformity. Simulation results from studies of
linear and nonlinear Landau damping are also presented.

1 Introduction

The dynamics of kinetic microinstabilities in space plasmas, particularly in the
weak turbulence regime (linear instability growth, γ < ω, the real frequency),
are very difficult to investigate using conventional particle-in-cell (PIC) plasma
simulation models [1,11]. This is due to the poor signal-to-noise ratio when at-
tempting to resolve the entire distribution funtion with discrete particles. Using
the conventional PIC method, random statistical fluctuations in the number of
particles per cell causes field fluctuations. It is very difficult to reduce this noise
by increasing the number of particles, N, since statistical noise only decreases
as N−1/2 for random loading and approximately N−1 for the quiet start meth-
ods which are a more uniform particle loading in phase space [1,24]. For many
problems of interest the physical fluctuations of the kinetic distribution function,
δf , are often much smaller than the total distribution, f, and can be dominated
by the noise. The δf algorithm alleviates this problem since only the perturbed
part of the distribution is represented by particles. This leads to orders of mag-
nitude reduction in the noise level, particularly when fo can be chosen such that
δf/fo < 1. This is because statistical fluctuations of the total f become δNδf/N
where δN is the statistical fluctuation in the number of particles per cell.

The δf -PIC method was originally developed in the electrostatic 1D Vlasov-
Possion system [13], building on previous work, and extended to the drift-kinetic
and gyrokinetic low frequency plasma descriptions [7,20,12,5,23]. Further gen-
eralizations to the fully electromagnetic PIC simulation, including relativistic
effects, have recently been made [24]. Using this technique it is possible to more
clearly identify the role of wave-wave-wave and wave-wave-particle interactions
in the saturation dynamics of kinetic microinstabilities driven by free energy

J. Büchner, C.T. Dum, M. Scholer (Eds.): LNP 615, pp. 109–124, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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sources in the distribution function and temperature and density spatial inho-
mogeneity.

In this paper the detailed algorithm for the complete electromagnetic system
is presented along with several case studies of electrostatic and electromagnetic
instabilities. These examples were chosen because they are difficult to simulate
using the conventional PIC method. The standard examples of linear and non-
linear Landau damping, weak beam instability, and thermal anisotropy-driven
electromagnetic instabilities, are found in many introductory graduate plasma
physics textbooks [8,14,3,10,17]. These are good supplements to the simulation
examples presented here. These examples are also of contemporary interest. For
instance, the weak beam instability nonlinear evolution has recently been con-
nected to the generation of electrostatic solitary waves in the magnetotail as
observed by the GEOTAIL spacecraft [18]. Studies of the beam instabilities
have been made using conventional PIC methods with approximately 10 million
particles in 1D and 30 million in 2D [16].

2 δF Particle Model

2.1 Electromagnetic Model Equations

In this section the basic equations for the electromagnetic δf -PIC algorithm are
presented. A discussion of total-f electromagnetic simulation models, including
examples, is given in the chapter by Pritchett [21]. We assume a collisionless
plasma and the evolution of the distribution function for a particular species is
governed by the Vlasov equation in continuity form

∂f

∂t
+
∂

∂z
· (żf) = 0 (1)

where the phase space coordinate is represented by the general vector z = (x,v).
By splitting the distribution function into a background and perturbation parts,
f(z, t) = fo(z) + δf(z, t), we can write the equation for the evolution of δf

∂δf

∂t
+
∂

∂z
· (żδf) = −ż1 · ∂fo

∂z
(2)

where ż1 = (0, (q/m)[E1 + v×B1
c ]). The characteristics, or particles, follow the

full nonlinear trajectories, z = zo + z1, and żo = (v, (q/m)[Eo + v×Bo

c ]).
The perturbed distribution,δf , is represented by

δf(z, t) =
∑

i

wiδ(z − zi) (3)

where a particle weight is defined as

wi =
δf

g
(4)
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g is a numerically loaded particle distribution or marker distribution expressed
as

g(z, t) =
∑

i

δ(z − zi) (5)

and is arbitrary. The equation of motion for the weights, wi, is obtained by
substituting these representations for δf and g into Eq.(2) and we obtain

dwi

dt
= −ż1 · 1

g(z, t)
∂fo

∂z

∣∣∣∣∣
z

(6)

Since both f and g satisfy df/dt=0 and dg/dt=0 we can express the source term
on the right hand side of Eq.(6) as

− fo

g(z,t=0) ż1 · 1
fo(z)

∂fo

∂z = −
(

f(0)
g(0) − wi

)
ż1 · 1

fo(z)
∂fo

∂z (7)

In summary, the final equations which we solve in the electromagnetic δf -PIC
model consists of the nonlinear trajectory equations, the particle weight equa-
tions and Maxwell’s equations for the the electromagnetic fields [24].

dwi

dt = −
(

f(t=0)
g(t=0) − wi

)
ż1 · 1

fo(z)
∂fo

∂z

żo = (v, (q/m)[Eo + v×Bo

c ])
ż1 = (0, (q/m)[E1 + v×B1

c ])
∇×E1 = − 1

c
∂B1
∂t

∇×B1 = 1
c

∂E1
∂t + 4π

c

∑
s

∑N
i=1 qiwiviS(x− xi)

∇ ·E1 = 4π
∑

s

∑N
i=1 qiwiS(x− xi)

(8)

2.2 Finite Difference Equations

The integration of Eqs.(8) is briefly discussed in this section. The time-centered
integration of Maxwell’s equations and the particle equations of motion are pre-
sented in the chapter by Pritchett [21] and some of the steps are repeated here
for completeness.

We consider explicit time integration schemes for the temporal differencing
and Fourier representation for the spatial derivatives. The FFT algorithm is
efficiently used to transform between real and k-space. Implicit time differencing
can easily also formulated within the δf -PIC framework and allow for the study
of low frequency fluctuations [15].

To proceed with the solution of the field equations we use a spectral de-
composition for the electric and magnetic fields, separating Maxwell’s equa-
tions into longitudinal and transverse parts ((EL(k) = k(k · E)/k2, ET (k) =
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E(k)−EL(k)). The field equations in Fourier space are [6]
∂ET (k,t)

∂t = ick ×B(k, t)− 4πJT (k, t)
∂B(k,t)

∂t = −ick ×ET (k, t)
EL = −4πikρ(k, t)/k2

(9)

and the time-centered Leapfrog finite-difference scheme gives

E
n+1/2
T (k) = E

n−1/2
T (k) + icΔtk ×Bn(k)− 4πΔtJn

T (k)
Bn+1(k) = Bn(k)− icΔtk ×E

n+1/2
T (k)

(10)

The particle equations are integrated also using the Leapfrog method in finite-
difference form

x
n+1/2
i = x

n−1/2
i +Δtvn

i

vn+1
i = vn

i + qiΔt
mi

[En+1/2
i + (vn+1

i
+vn

i )×B
n+1/2
i

2c ]
(11)

Integration of the weight evolution equation can be accomplished using the
centered difference form

wn+1
i = wn

i −Δt
(
f(0)
g(0)

− wn
i

)
ż

n+1/2
1 ·

(
1

fo(z)
∂fo

∂z

)n+1/2

(12)

The weighted particles, or the δf portion of the distribution, is interpolated
onto a grid for construction of the mesh charge and current densities. This is
represented by the interpolation shape factor, S, in Eq.(8). Typically a second
order or quadratic spline method is used.

2.3 Computational Cycle – Electrostatic Model

The detailed steps in the computational cycle for the electrostatic δf -PIC model
are presented in this section. The main difference between this model and the
conventional PIC is the weight evolution equation which must be adapted to the
time-centered Leapfrog integration. The staggered particle position and velocity
means that the weight time level must be adjusted to both.

Initially: x
n−1/2
i ,vn

i , w
n
i , w

n−1
i are given.

Step 1: Advance x
n−1/2
i to x

n+1/2
i using x

n+1/2
i = x

n−1/2
i +Δtvn

i .
Determine wn+1/2

i using wn+1/2
i = (3/2)wn

i − (1/2)wn−1
i .

Step 2: Accumulate the perturbed charge density on the grid using
ρn+1/2(x) =

∑N
i=1 qiw

n+1/2
i S(x− x

n+1/2
i ).

Step 3: Transform ρn+1/2 to k-space giving ρn+1/2(k).
Solve for En+1/2(k) using ρn+1/2(k) from Eq.(9).

Step 4: Transform En+1/2(k) to real space.
Step 5: Advance the velocities to vn+1

i using the interpolated electric field at the
particle and vn+1

i = vn
i +ΔtEn+1/2

i (xn+1/2).
Step 6: Advance the weights using Eq.(12) and vn+1/2

i = (vn+1
i + vn

i )/2 is used
in the source term.

Step 7: Return to Step 1.
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2.4 Computational Cycle – Electromagnetic Model

We now summarize the steps involved in advancing the electromagnetic fields
and particles for one time step.

Initially: x
n−1/2
i ,vn

i , w
n
i , w

n−1
i ,E

n−1/2
T ,Bn are given.

Step 1: Advance x
n−1/2
i to xn

i using xn
i = x

n−1/2
i + (Δt)vn

i .
Step 2: Accumulate the perturbed current density on the grid using

Jn(x) =
∑N

i=1 qiv
nwn

i S(x− xn
i ) and transform Jn(x) to k-space

giving Jn(k).
Step 3: Advance (En−1/2

T (k),Bn(k)) to (En+1/2
T (k),Bn+1(k)) from Eq.(10).

Step 4: Advance the positions using x
n+1/2
i = x

n−1/2
i +Δtvn

i . Determine wn+1/2
i

using wn+1/2
i = (3/2)wn

i − (1/2)wn−1
i .

Step 5: Accumulate the perturbed charge density on the grid using
ρn+1/2(x) =

∑N
i=1 qiw

n+1/2
i S(x− x

n+1/2
i ).

Step 6: Transform ρn+1/2 to k-space giving ρn+1/2(k).
Solve for E

n+1/2
L (k) using ρn+1/2(k) from Eq.(9).

Step 7: Transform (En+1/2
L (k),En+1/2

T (k),Bn+1/2(k)) to real space. Obtain
Bn+1/2 = (Bn+1 + Bn)/2 on the grid.
Step 8: Advance the velocities to vn+1

i using the interpolated electric and mag-
netic fields at the particle as given in Eq.(11). Advance the weights using Eq.(12)
and vn+1/2

i = (vn+1
i + vn

i )/2 in the source term.

The evolution equation for the perturbed distribution also contains important
conservation properties such as total number density

N∑
i=1

wi(t) = 0 (13)

which must be monitored during the simulation. Other global quantities which
can be output include the kinetic energy,

∑
s

∑N
i=1(ms/2)v2iwi(t), and the total

field energy, 1
8π

∫
d3x(E2 +B2).

3 δF -PIC Simulation Model Tests

In this section the results from simulations using the electrostatic and electro-
magnetic δf -PIC model are presented. The case studies are chosen from situa-
tions where conventional PIC methods are inaccurate or give results which are
difficult to interpret. These include linear and nonlinear wave damping, weakly
growing instabilities and evaluation of marginal stability.

3.1 Linear Landau Damping

As a first test case we consider the standard problem of linear Landau damping
in a uniform unmagnetized plasma. The analytical damping rate can be obtained
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from the electrostatic dispersion relation ε(k, ωr + iγ) = 0, where the dielectric
function is defined by [14]

ε(k, ωr + iγ) = 1 +
∑

j=species

ω2
pj

k2

∫
d3v

k · ∂fj

∂v

ωr − k · v + iγ
(14)

For the general case of a Maxwellian plasma distribution

fj(v) = (mj/2πTj)3/2exp(−mjv
2/2Tj) (15)

the integration can be carried out and the highest frequency normal modes are
determined to be thermally modified electron plasma oscillations with approx-
imate dispersion given by the real frequency, ω2

r � ω2
pe(1 + 3k2λ2

D), and the
Debye length(squared) is λ2

D = Te/4πnee
2 = v2Te/2ω

2
pe. The Landau damping

increment is given by

γL = −
(π

8

)1/2(me

Te

)3/2ω4
r

k3 exp
(
− me

2Te

ω2
r

k2

)
(16)

which reduces to

γL = −
(π

8

)1/2 1
(kλD)3

exp
(
− 1

2k2λ2
D

− 3
2

)
(17)

using the real frequency given earlier under the assumption kλD < 1. In order
to obtain accurate damping rates the numerical solution to the exact dispersion
relation, Eq.(14), is obtained for comparison to the simulations. This dispersion
relation is given in Sect. 3.3 without the beam.

In order to simulate Landau damping as an initial value problem, using the
δf -PIC model we begin by specifying the source term in the weight evolution
equation, Eq.(8). From Eq.(15) this is given as

∂fo(v)
∂v

fo(v)
=
−2v
v2T

(18)

Next, the marker distribution, g(t=0), is initialized. It is arbitrary but a conve-
nient choice is one which is consistent with the initial distribution,f(v). Therefore,
g(t=0)=f(t=0). For the Landau damping simulation we use a one-dimensional
system with the following parameters. Particle number, N = 5 × 104, nor-
malized thermal velocity, ṽ = vTe/ωpeΔ = 2.5, system size, L = 32Δ, and
time step, ωpeΔt = 0.05. An initial perturbation of the weights, of the form
δf/fo = 1 + εcos(kox), was given with koλD = 0.5 and ε = 0.05.

The results for the time evolution of the field mode energy,kλD = 0.5, are
shown in Fig. 1. The mode energy oscillates at approximately the plasma fre-
quency with an overall decay consistent with the analytical damping rate within
a few percent. As can be seen, the low noise technique correctly describes lin-
ear decay down to very low amplitudes. For the same number of particles, the
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Fig. 1. Time evolution of the electric field mode energy for the case of linear Landau
damping.

total-f PIC method shows Landau damping over about one order of magnitude
and makes for a more difficult measurement. As the decay of the mode energy
procedes, eventually there is a recurrence effect from free streaming where the
density is restored to its initial value. The first recurrence peak occurs very close
to the theoretically predicted value of Tr � 2π/kΔv � 38ω−1

pe .
The influence of marker distribution loading was also examined. In the first

case we considered an ordered loading to cover the phase space. This is done us-
ing a bit-reversed quiet start method based on base-2 bit-reversed numbers [1,4].
This was compared to a random loading method consistent with the initial
Maxwellian distribution. The comparison of the result for the mode energy
time evolution is also shown in Fig. 1. The damping rates are consistent as
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well as the first recurrence peak. The ordered marker start, however, showed a
lower amplitude decrease and subsequent recurrence peaks were more clearly re-
solved. Therefore, a purely random marker distribution required more particles
to achieve a comparable level of accuracy.

3.2 Nonlinear Landau Damping

Linear Landau damping involves resonant particles and the damping rate de-
pends on the slope of the distribution function,f(v), at the phase velocity of the
plasma wave. The distribution is considered unperturbed and this approximation
is justified if the characteristic time of variation in f(v) is much larger than the
wave damping time set by the Landau damping rate, γ−1

L . For larger amplitude
waves some of the particles traveling near the phase velocity will be trapped
and oscillate in the quasi-stationary potential well. Nearly trapped particles will
also exchange energy with the wave and as the wave amplitude changes, initially
trapped particles may become untrapped. This makes for a rather complex evo-
lution of the distribution function; eventually the initial wave damps to a finite
steady amplitude with a zeroth order distribution function. This evolution has
been studied previously by analytical methods and continuum Vlasov simula-
tions [2,22,9]. It is considered a rigorous test of Vlasov simulations since the code
uses a velocity grid and must accurately resolve detailed structural changes in
the distribution function to a high degree of accuracy. The δf -PIC method quite
easily describes this nonlinear damping accurately with relatively few marker
particles.

The transition to the regime of nonlinear Landau damping can be estimated
by considering the bounce period of the resonant electrons trapped by the wave
electric field. This bounce period, given by τB = (2me/ek

2|φk|)1/2 with φk the
electric potential, is related to the characteristic time scale of the distribution
function in the resonant velocity region. When γL(k)τB < 1, the wave amplitudes
are considered large and a threshold limit can be estimated as

|φk| � me

ek2 γL(k)2 (19)

The theory for the nonlinear evolution is too involved for presentation here but
the general features of the solution are that for short times, t < τB , the untrapped
particles dominate and lead to γ(t) � γL. The initial amplitude follows the linear
decay and after about a bounce period the wave energy stops decaying as the
trapped particles begin reconstructing the wave [19]. The reconstructed finite
amplitude wave is lower that the original amplitude with a rough magnitude
change given by φk(t) = φk(t = 0)(1 − γL(k)τB). The variation in the mode
energy is dominated by the trapped particle oscillations which eventually lose
coherence with the wave. It is important to note that this phase mixing effect of
the trapped particles removes the original Landau damping increment.

This basic result is obtained in the δf -PIC simulations shown in Fig. 2 where
we use the same parameters as the linear Landau damping study but increase the
original perturbation strength to ε = 0.2. The initial energy damps more rapidly
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Fig. 2. Time evolution of the electric field mode energy for the case of nonlinear Landau
damping.

than γL and reaches its first minimum at ωpet � 18. After this the mode energy
grows exponentially until ωpet � 40 and then saturates. After saturation the
basic mode oscillates with a period of about 20ω−1

pe , which agrees well with the
particle trapping time calculated from the electric potential at the first maximal
value at ωpet � 40.

3.3 Weak Beam Instability

We now consider the case of a nonequilibrium distribution in the form of a
background Maxwellian in the presence of a weak beam of particles with density,
nb. This is analytically described by

fe(v) = (1− ε)(me/2πTe)3/2exp(−mev
2/2Te)+

ε(me/2πTb)3/2exp(−me(v − vb)2/2Tb)
(20)

where ε = nb/ne << 1 and |vb| > vTe. We assume the ions are immobile and
isotropic and one-dimensional motion for both beam and background electrons.
In the absence of the beam, ε = 0, electrostatic perturbations are damped ac-
cording to the rate, γL, given previously. The presence of the beam gives rise
to Landau resonances in this region of phase space and the possibility for wave
growth due to the region of positive slope in f(v). The growth rate is given
approximately by

γ = γL + γb � −
(

π
8

)1/2(
me

Te

)3/2
ω4

r

k3 (1− ε)exp
(
− me

2Te

ω2
r

k2

)
+ ε

(
Te

Tb

)3/2(
kvb−ωr

ωr

)
exp

(
− me

2Tb

(
ωr−kvb

k

)2) (21)
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where ω2
r � ω2

pe(1+3k2λ2
D). The growth rate due to the beam is proportional to

the beam density, ε, making this a challenging case for total-f PIC simulations
in the weakly dense beam regime.

We now present results of the weak beam instability using both total-f and
δf -PIC methods. The source term in the weight evolution equation is modified
to become

∂fo(v)
∂v

fo(v)
=
−2v
v2Te

(1− ε) + ε
(−2(v − vb)

v2b

)fb

fo
(22)

The parameters used for this case were as follows; particle number, N = 5×105,
normalized thermal velocity, ṽ = 1., system length, L = 32Δ, beam speed,
vb = 5vTe, Te = Tb, and beam density, ε = 10−5 − 10−3.

The linear growth rates quoted are only approximate and more precise values
are obtained from the complete dispersion relation for the beam plasma system
given by the following dielectric [14]

εT (k, ωr + iγ) = 1 +
ω2

pe

k2v2Te

(
1 + ξeZ(ξe)

)
+

ω2
pb

k2v2Tb

(
1 + ξbZ(ξb)

)
(23)

where ξα = (ω − kvdα)/kvTα and Z is the plasma dispersion function which
is related to the complimentary error function with complex argument [14]. In
Fig. 3 the growth rates versus wavenumber are plotted for different values of the
beam density, ε. The maximum growth rate occurs at kλD = 0.17. Also shown
is the maximum growth rate versus ε, decreasing nearly linearly.

Next, we present simulation results of the weak beam instability using the
total-f PIC model. The initial distribution with weak beam is illustrated in
Fig. 4a. Figure 4b shows the results of the total electrostatic energy versus
time for beam densities of ε = 0.01 and ε = 0.001. 106 particles were used for
these two cases and instability is observed for the larger beam density but not
for the lower density. Over one order of magnitude more particles was needed to
observe the weak growth in the low density case, however, the saturated state
exhibited a high degree of noise. In Fig. 5 the results for the ε = 0.001 case are
shown using the δf -PIC model using 5 × 105 particles. Clear linear growth is
observed over many decades and an accurate value of γ = 0.015 is obtained for
the most unstable mode which is within 5 percent of the theoretical value. The
post-saturation phase shows much clearer nonlinear trapped particle oscillations
and frequency shifting.

3.4 Anisotropic Temperature-Driven Electromagnetic Instability

As a final example we consider an electromagnetic instability in the electron
cyclotron range of frequency driven by thermal anisotropy [14,3]. A form of the
plasma distribution which includes anisotropy is the bi-Maxwellian

foe = no

(
me

2πT⊥

)(
me

2πT‖

)1/2

exp

[
−mev

2
⊥

2T⊥
−
mev

2
‖

2T‖

]
(24)
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Fig. 3. Linear theory plots of the linear growth rate versus wavenumber for three beam
densities and the lower plot is the maximum linear growth versus the beam density.

Parallel propagating, circularly polarized electromagnetic waves in the frequency
range, ωci < ω < ωce, where ωc = qB/mc is the cyclotron frequency, are unstable
when the electron distribution is characterized by T⊥e > T‖e. A similar instability
exists for the ions but this case is not considered here. The linear dispersion
relation for the parallel propagating modes is [14]

ε±(ω, k) = 1− k2c2

ω2 − ω2
pi

ω2 + ω2
pe

ω2

[
ωce√
2kv‖th

Z

(
ω∓ωce√
2kv‖th

)
− T⊥

2T‖
Z ′
(

ω∓ωce√
2kv‖th

)] (25)
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Fig. 4. Results from total-f PIC simulations. a) Initial electron distribution function
for the weak beam instability case and the beam is barely visible at drift speed of
vb = 5vTe b) Total electric field energy for two different beam densities.

where ± refers to the right-handed(+) and left-handed(-) circularly polarized
waves. The parameter k refers to the wavenumber parallel to the ambient mag-
netic field. For a moderately dense plasma, ωpe > ωce, and perturbation fre-
quency |ωr| comparable to |ωce|, the real frequency is approximated by ωr �
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Fig. 5. Time evolution of the total electrostatic energy for the δf -PIC simulation of
the weak beam instability.

∓ωce ± ωceω
2
pe/(ω

2
pe + c2k2). The linear growth rate is given by

γ � √π ω2
pe

kvT e

(
1 + c2k2

ω2 + ω2
pe

(ωr±ωce)2

)−1[
− 1 +(

1− Te⊥
Te‖

)
(ωr±ωce)

ωr

]
exp

(
− (ωr±ωce)2

k2v2
T e

)
(26)

For an isotropic plasma with T⊥e = T‖e, γ < 0, and the waves are weakly damped
by resonant electrons with kv‖ = ωr ± ωce. For T⊥e > T‖e the anisotropy causes
wave growth and the threshold level for instability is given by the approximate
condition

T⊥
T‖
>

1
(1− ωr/ωce)

� 1 +
c2k2

ω2
pe

(27)

For wavelengths kc/ωpe � 1 the threshold anisotropy level is roughly 2. This
marginal stability condition, which is only approximate, can be verified using
the δf -PIC model since the noise level can be initialized to a very small level.

For the low noise electromagnetic simulations we use the system of equations
given by Eq.(8). The source term for the weight evolution requires the gradient
of the distribution which is

∇vfo(v⊥,v‖)
fo

= 1
fo

(x̂∇vx
fo + ŷ∇vy

fo + ẑ∇vz
fo)

= (vxx̂+ vy ŷ)
( 1

v⊥ ∂v⊥fo

fo

)
+ ẑ

∂v‖ fo

fo

(28)

with v⊥ = (v2x + v2y)1/2 and v‖ = vz. The derivative of the bi-Maxwellian is
easily evaluated and substituted into Eq.(8). The electromagnetic simulations
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are performed using one spatial and three velocity components. An external
magnetic field is imposed in the direction of the spatial component and periodic
boundary conditions are assumed. The simulation parameters used are listed
as follows; system size, L = 256Δ with Δ/λD = 1, collisionless skin depth,
c/ωpe = 16Δ, electron cyclotron frequency normalized to the electron plasma
frequency, ω̂ce = 0.5, No = 10 particles/grid cell, time step ωpeΔt = 0.05, and
temperature anisotropy ranging from T⊥e/T‖e = 1− 9.

The simulation results of the thermal anisotropy-driven electron cyclotron
instability are shown in Fig. 6. The magnetic field modal energy versus time

Fig. 6. Time evolution of the total magnetic energy for the electron temperature
anisotropy-driven instability using the electromagnetic δf -PIC algorithm. The bottom
panel is the extension of the simulations in the top panel for weaker anisotropy.
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is plotted for various levels of initial anisotropy. The growth rate of the mag-
netic energy is reduced as the thermal anisotropy parameter approaches unity.
The threshold level is determined to be T⊥e/T‖e = 2.8 which agrees well with
the result obtained from the numerical solution to the complete dispersion
relation(T⊥e/T‖e = 2.6). Below an anisotropy level of 4 the total-f simulation
could not resolve the linear growth rate accurately.

4 Summary

In this paper an efficient and accurate technique for study of the linear and non-
linear evolution of kinetic microinstabilities has been presented. This is achieved
by following the evolution of the nonlinear perturbed plasma distribution, for-
mulated in a Lagrangian approach which is suitable for particle simulation. The
algorithm for the fully electromagnetic system was presented using an explicit
time-centered form of the finite difference equations. For strongly unstable plas-
mas with γ ≥ ω and where δf/f ∼ 1, the conventional or total-f simulation
approach is viable with large numbers of particles. In the opposite regime where
instabilities are weak and saturation amplitudes low, the δf -PIC method works
well. Several examples were used to illustrate this; linear and nonlinear Landau
damping, the weak beam or bump-on-tail instability and the electromagnetic
temperature anisotropy-driven electron cyclotron instability. In this latter case
the marginal stability condition could be verified.

The total-f method is particularly difficult for investigating weak instabili-
ties in multi-dimensional plasmas. Even if billions of particles can be used to
represent the total distribution the integration time scales are very long to fol-
low the growth and saturation dynamics. Therefore, only a limited regime can
be investigated. Finally, the discrete nature of the δf -PIC method allows for
straightforward parallelization of the algorithm, just as in the conventional PIC
method. Hence, a large number of discrete markers can be used to cover the
various regions of phase space and detailed particle convergence studies are pos-
sible.
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Particle Simulation of Dusty Plasmas

Glenn Joyce, Martin Lampe, and Gurudas Ganguli

Plasma Physics Division Naval Research Laboratory
Washington DC 20375, USA

Abstract. The NRL Dynamically Shielded Dust (DSD) particle simulation code has
been developed to model dusty plasmas. The code uses the techniques of molecular dy-
namics, particle-in-cell plasma simulations, and the test particle formulation of plasma
kinetic theory. In addition, the interaction potential between dust particles is broken
into long and short range parts using the P3M technique of Hockney and Eastwood.
The resulting simulation code avoids the necessity of integrating on plasma time scales,
but still is able to include plasma effects.

1 Introduction

1.1 Experimental Properties of Dust

Dusty plasmas are ionized gases that also contain a distribution of charged solid
particles, typically with particle diameters of 0.1 to 10μm. Under the most usual
circumstances, the “dust” grains accumulate an electric charge which is negative
and of the order of 103 to 104 times the charge of an electron, due to the preferen-
tial deposition of electrons on the grain surface. (It is also possible for the grain
charge to be positive, for example in the presence of ultraviolet radiation which
leads to electron emission from the particle.) Because of the very strong electrical
interactions between the grains, and the mediation of these interactions by the
plasma, dusty plasmas may exhibit new types of physical phenomena which in
some sense represent a synthesis and extension of plasma physics, fluid physics
and condensed matter physics.

Dusty plasmas occur in a vast variety of natural, experimental and com-
mercial settings, including (among many others) the environment around space
vehicles, the D-region of the ionosphere [1], and the rings of Saturn [2]. On
the earth, they can also occur in discharges used for plasmas used in plasma
processing [3]. Experiments on dusty plasmas generally proceed by deliberately
introducing a “dust” of micron-sized particles into a discharge initiated between
two electrodes and contained within a chamber [4]. At the electrodes and the
chamber walls, there is always a sheath in which strong electric fields occur and
serve to confine the plasma electrons within the chamber. These fields also drive
a strong flow of the positively-charged ions toward the electrode. In an extended
region called the presheath, the ion flow velocity builds up to the ion sound
speed cs, and within the sheath itself the flow speed exceeds cs. Ion flows of
this magnitude can strongly affect the properties of the plasma. In terrestrial
experiments, the dust particles are supported against gravity by strong electric
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fields, and these fields strongly influence and limit the physical phenomena that
can be studied. For example, the dusty plasma is usually confined to a thin sheet
at the edge of the plasma sheath, and is subject to strong ion flows which are
driven by the electric fields. The electric field at the sheath edge levitates the
dust particles against gravity and confines them above the electrode. In this situ-
ation, the dusty plasma is found to be anisotropic and typically two-dimensional,
because of the thinness of the dust cloud (frequently only a few layers of dust
particles), and also because the ion flow profoundly influences the interactions
between dust grains and establishes a preferential direction. In a microgravity
environment, it is possible to fill large volumes with dusty plasma and to vary
the electric fields over a wide range, and thereby to support dusty plasmas that
have entirely different properties [5]. Dusty plasmas in microgravity may also
ultimately have important commercial applications, for example in the depo-
sition of thin films with unique properties. “New” plasma physics has emerged
from experimental studies in terrestrial and microgravity environments with new
modes of oscillation and other properties not seen previously in “normal” plas-
mas. If the dust is cooled enough, the dust particles may act as a liquid or in
some cases as a solid [4]. One set of these new properties is concerned with the
formation of Coulomb lattices, the lattice behavior, and, with the addition of
kinetic energy to the dust, the melting of the lattice. Experimentally, the cooling
occurs at neutral pressures above some critical pressure, Pcrit. There is a wake
downstream of each grain caused by the streaming ions. The wake effects cause
positively charged regions behind the grains that can attract other grains. It is
thought that these wakes are responsible for the lattice formation in the cold
dust. When the neutral pressure is lowered below Pcrit, the grains acquire a large
random kinetic energy, and the dust “melts” forming a weakly coupled fluid.

1.2 Kinetic Modeling of Dust

The state of the modeling of dusty plasma phenomena is less developed than
the state of experiments. Current kinetic models fall into two general classes:
molecular dynamics models which follow the dynamics of the dust grains but
normally employ a model to include the effects of the plasma, and particle-in-
cell or fluid models which follow the plasma dynamics [6] [7] [8]. Because of
the large difference in the time scales of the dust particles which may be on the
order of 10−2 sec. and the plasma particles (the ion time scales are typically 10−7

sec.), particle-in-cell codes are time consuming, and generally are used to model
non-linear plasma effects in the presence of stationary dust particles. There have
been some studies including dust motion, but usually these are in fewer than
three dimensions.

Molecular Dynamics. In “molecular dynamics” simulations, the force on any
given particle is calculated by directly summing up the forces due to each of the
other particles. This approach works well when interparticle forces are short-
range so that each particle is influenced only by a small number of other parti-
cles in its immediate vicinity. In a plasma, however, long-range interactions arise
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due to the slow fall-off of the Coulomb potential, and in a sense every charged
particle is influenced by every other charged particle. It usually is not possible
to do calculations following the actual number of electrons and ions (which may
be a number Nreal that lies somewhere between 1010 and 1022 ), but often re-
alistic simulations can be done using a number of particles N which is much
smaller than Nreal, but still very large (e.g., 106). However, two problems arise:
the molecular dynamics approach requires N2 calculations per time step which
becomes prohibitive computationally, and the reduction from Nreal to N simula-
tion particles results in an unphysical enhancement of short-range “collisional”
interactions.

One approach has been to use molecular dynamics simulations of the dust
grains using the Debye-shielded Coulomb potential,

ϕ(k) =
qe−r/λDe

r
(1)

In this case, the plasma does not appear except as the source of Debye shielding.
This force is, however, isotropic and does not lead to the types of strongly coupled
structures seen experimentally.

Particle-in-Cell (PIC). In this approach, the charge of each particle is dis-
tributed among the nearest grid points, and then the electric field is calcu-
lated by solving Poisson’s equation using the charge density on the grid as the
source [9] [10]. In addition to greatly reducing the computational burden when
N is large, this approach in effect smears out each point particle j, located at
rj , into a finite-sized charge distribution with a specified shape S(rj). This then
eliminates the strong short-range interaction of charged point particles.

2 NRL Dynamically Shielded Dust (DSD)
Simulation Code

In the study of dusty plasmas, neither of these approaches is completely sat-
isfactory. In the strongly-coupled dust component, the short-range part of the
interparticle interaction is of paramount importance in the formation of lattices,
organization of vortices, and so on. However, the electrons and ions in the plasma
are weakly coupled, and participate in long range collective interactions that play
an essential role. The electron-ion plasma also serves as a medium which me-
diates long-range interactions between dust particles, and these are thought to
also play an important role in dust structuring and dynamics. Furthermore, the
dynamics of the dust occurs on a vastly slower time scale than that of the elec-
trons and ions (because a dust particle is typically 1012 times the weight of an
ion), and on a much coarser spatial scale (because the plasma particle density
np may be three or more orders of magnitude higher than the dust density nd).
Because of these difficulties, complete simulations of the dusty plasma have not
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been attempted; simulation studies have tended to focus on one aspect or an-
other of the problem, and in many cases have made simple assumptions in order
to elucidate qualitative aspects of the physics.

2.1 General Features

We have developed a code, DSD, to model strongly coupled dust in plasmas [13].
We make use of the techniques of molecular dynamics simulation, PIC simu-
lation, the “particle-particle/particle-mesh” (P3M) technique of Hockney and
Eastwood [10] and we also make use of the dressed test particle representation,
which is one of the theoretical foundations of plasma physics [11]. Many of the
techniques we use in the model are common to all PIC plasma simulation codes.
The unique properties of the code follow from the accurate representation of both
the long-range and short-range aspects of the interaction between dust grains,
as mediated by the complete plasma dielectric response.

In the usual case (near the sheath), the mean Coulomb potential energy of
the electrons is <<Te, and the mean Coulomb potential energy of the ions is
small compared to the ion streaming energy 1

2miu2
i . As a result, the onlinear

perturbations to the ion orbits are weak and the response of the plasma to the
presence of a test particle (in this case the “dust”) is linear and is given by

ϕtrue(k) =
q

2π2k2D(k,k · vD)
(2)

where vD is the drift of the ions through the dust. Since the plasma response
is linear, the potential due to many particles is the sum of the potentials of the
individual particles. The plasma dielectric function, D(k,ω) contains the plasma
properties and for warm electrons can be written as

D(k, ω) = 1 +
1

k2λDe
+
ω2

pi

k2

∫
d3vk·∂fio(v)/∂v

ω−k·v+iνi

1− iνi

∫
d3v fio(v)

ω−k·v+iνi

. (3)

The phase speeds of streaming instabilites which are sometimes present in the
dust-plasma system are much faster than the ion or electron speeds. There are no
resonances with the ions or electrons due these waves and the plasma response
function given by equation (3) provides a good representation of the plasma.

Each dust grain may be thought of as an independent particle “dressed” by
the plasma. For no drift, the potential becomes the Debye-Huckel potential

ϕtrue(k) =
qe−r(1+Te/Ti)/λDe

r
(4)

and exhibits Debye shielding. When a drift is present, the resulting potential is
anisotropic. Figures 1 and 2 demonstrate the wakes in a plasma caused by an ion
stream from left to right. The test particle is at the position z = 0 and textbfr
= 0. In Fig. 1, the potential shows a wake behind the particle. The negative
regions demonstrate attractive as well as repulsive regions. Even in the absence
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of collisions with neutrals, the wake decays away due to Landau damping. As
the collisions with neutrals increase, the wake damping increases. Figure 2 shows
that the attractive regions behind the particle are also in the radial direction.
The resulting forces tend to make particles line up in the streaming direction.

The DSD code represents the dust as simulation particles interacting through
the dressed particle potential.

Fig. 1. Electrostatic potential of a stationary charge in a plasma with streaming ions.
The ions are moving left to right. The solid line shows the potential with no collisions.
The dashed and dotted lines show the effect of ion-neutral collisions on the potential.
The collision frequency for the dashed line is higher than for the dotted line.

Fig. 2. Contour plot of the electrostatic potential of a stationary charge in a plasma
with streaming ions. The solid contours denote regions of repulsion while the dashed
contours represent regions of attraction.



130 Glenn Joyce, Martin Lampe, and Gurudas Ganguli

2.2 Long and Short Range Interactions

Because of the laydown method, the particle-in-cell procedure gives correctly
only long range force while molecular dynamics contains short-range interac-
tions, but the dynamics requires the calculation of N2 interactions. We use both
techniques together with dressed particles according to the P3M procedure of
Hockney and Eastwood. The division of the particle potential into long- and
short- range interactions using the P3M allows a full force calculation while
requiring a smaller number of interactions [10].

2.3 DSD Scheme in Detail

If S(k) is the structure function of the finite-sized particles in a PIC model, i.e.
the Fourier transform of the particle charge distribution S(r), then in k-space
the potential induced by the dressed PIC particle is

ϕref (k) =
qS(k)

2π2k2D(k,k · vD)
. (5)

This is the reference potential. Figure 3 shows the two particle interaction
force using a linear laydown scheme in PIC. Note that when particles are closer
than a cell length, the interparticle force decreases to zero linearly instead of
increasing. The linear interpolation scheme has the property of treating the
simulation particles as charge “clouds” instead of point particles. Particle-in-cell
techniques do not treat the short-range forces correctly. To define the short range
potential ϕsr(k), we subtract the reference potential (the PIC potential) from
the true potential; ϕsr(k) = ϕtrue(k)−ϕref (k) is zero outside a region near the
particle. We may sum up directly the short-range force on any particle by all
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Fig. 3. Interaction force in two dimensions for linear laydown [12]
.
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Fig. 4. Nearest neighbor cells in three dimensions.

Fig. 5. Nearest neighbor cells in two dimensions.

other particles in its vicinity. Only a few particles in the nearest neighbor cells
will contribute and this is not an N2 operation. Figure 4 shows the region in
which particles can contribute to the force on a particle in the interior cell. In
order to be able to see this more clearly, Fig. 5 shows the nearest neighbors in
two dimensions.

The method of pushing particle in the DSD code is to:

• Calculate the charge density on a mesh. For this, DSD uses linear weighting
although higher order methods could be used.

• Calculate the reference force from the reference (PIC) potential, ϕref (k)
• Calculate the momentum change from this force as is usually done in plasma

simulations.
• Calculate the momentum change due to the short-range force using pair-wise

interactions as is done in molecular dynamics simulations.
• Update the particle positions found from the resulting total momentum.
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The advantage of this technique over treating the plasma ions as particles is
that the time steps used in the code can be long compared to those required for
simulating ions, while kinetic electron and ion properties such as wake effects due
to streaming plasmas are included correctly in the force formalism. In addition
to being efficient, the technique is very general, and can be made to include
a first-principles treatment of all of the physical effects that are thought to
be important. Scattering of ions and electrons off each other and off neutral
atoms can be included in the dielectric function. Coulomb ion drag forces on
the dust grains are included as a reaction force to the ion flow. Deposition of
ion and electron charge on the dust grains can also be included, and a dipole
component can be added to the charge distributions on a single dust grain. This
model contains all of the physics necessary to simulate equilibrium states, phase
transitions, excitations, and dynamics of the strongly-coupled dusty plasma in
both ground-based and microgravity environments.

3 Examples

We now show a number of examples of the DSD code for representing strongly
coupled plasmas in the laboratory.

The first example (Fig. 6) is a single layer of dust in a plane with no ion
streaming. There is a confining force normal to the plane, and a linearly in-
creasing force in the plane. This is an example of a two dimensional “Coulomb”
crystal.

A second example (Fig. 7) is a single layer of dust in which the ions are
streaming in the -z direction through the dust. In this example, the dust grains
are aligned in the direction of the dust streaming.

Fig. 6. Two dimensional Coulomb crystal simulated by the DSD code [13]
.
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Fig. 7. Two dimensional dust layer in a plane. The plasma has streaming ions [13].

The last example (Fig. 8) is a three dimensional configuration of dust in a
plasma in which the ions are streaming in the -z direction. In the upper plots
(a) and (b), the neutral dust pressure is low, and the dust is hot. The left plot
(a), shows that the particles circulate more or less freely within the dust cloud,
and the right plot (b), shows no alignment between particles the upper part
of the system and those in the lower part. In the lower plots (c) and (d), the
neutral dust pressure is high enough that the dust particles are cold. The left
plot (c), shows that the particles are confined to three planes with a few particles
above and below. The right plot (d), shows that many of the particles in the
top plane are aligned with those in the bottom plane. For more information on
these phenomena see the article by Joyce, Lampe and Ganguli [14].

4 Summary

We have developed a simulation code, DSD, to model dust in a plasma. The
code contains the elements of plasma kinetic theory, molecular dynamics, and
particle-in-cell simulation. We have avoided having to resolve short time scales
since the plasma appears only implicitly. The plasma is represented as a dielectric
and contains the effects of ion streaming, Landau damping, and collisions of the
ions with the neutral gas in the plasma and with each other. We have taken
into account long and short range interactions using the P3M method. The only
particles in the computation are the dust particles. Using the DSD simulation
model, we have been able to reproduce many of the phenomena associated with
dust in a streaming plasma.
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(d)

(a)

(c)

(b)

Fig. 8. Snapshot of grain locations. (a) and (b) are for a simulation with P=50 mTorr
with hot particles. (a) Projection of the grains onto the x-z plane. (b) Projection of the
grains onto the x-y plane. The streaming direction is z. (c) and (d) are similar plots
for a simulation with P=200 mTorr. In this case the grains are cold. Blue diamonds
indicate grains located in the top region z>15.9λD Red circles indicate grains in the
lower region z<15.8λD.
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Abstract. Hybrid codes, in which the ions are treated kinetically and the electrons
are assumed to be a massless fluid, have been widely used in space physics over the past
two decades. These codes are used to model phenomena on ion inertial and gyro-radius
scales, which fall between longer scales obtained by magnetohydrodynamic simulations
and shorter scales attainable by full particle simulations. In this tutorial, the assump-
tions and equations of the hybrid model are described along with some most commonly
used numerical implementations. Modifications to include finite electron mass are also
briefly discussed. Examples of results of two-dimensional hybrid simulations are used
to illustrate the method, to indicate some of the tradeoffs that need to be addressed
in a realistic calculation, and to demonstrate the utility of the technique for problems
of contemporary interest. Some speculation about the future direction of space physics
research using hybrid codes is also provided.

1 Hybrid Codes: Past

Generally, the term “hybrid code” in plasma physics can refer to any simulation
model in which one or more of the plasma species are treated as a single or
multiple fluids, while the remaining species are treated kinetically as particles.
The plasma can be coupled to the electromagnetic fields in a variety of ways: full
Maxwell equations, low-frequency magnetostatic (Darwin) model, electrostatic
only, etc. In this tutorial, we shall concentrate mainly on the most common
type of hybrid code used in space plasmas: where all the ions are treated kineti-
cally, the electrons are assumed to be an inertia-less and quasi-neutral fluid, and
the electromagnetic fields are treated in the low-frequency approximation. Some
comments on the extension to finite electron mass hybrid algorithms will also be
made.

Because this tutorial is being presented in the context of the International
School for Space Simulation (ISSS), we will mostly restrict the discussion of
“past” uses of hybrid methods in space physics to the articles published in
the previous schools. Those articles give appropriate and timely references to
research that was carried out at that time with hybrid codes that were then
available.
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In the same vein, in this tutorial the principal focus will be on numerical
implementations of the hybrid model that are presently being used, and simi-
larities and differences among the various algorithms. Numerical examples are
discussed, in the context of some research questions currently being investigated
with hybrid codes. This is the subject of Sect. 2: Hybrid codes – present.

Simulation codes with particle ions and fluid electrons appeared in the early
70’s. Auer et al. [1] treated the ions as charged sheets and studied shocks and
associated heating in relation to the Earth’s bow shock. Forslund and Freid-
berg [2] and Mason [3] modeled shocks with unmagnetized ions treated by the
particle-in-cell method. Chodura [4] wrote the first true “hybrid” code in the
sense described above and applied it to laboratory pinch experiments. The hy-
brid model was subsequently used by Sgro and Nielson [5] and Hamasaki et
al. [6] for related types of experiments. A 2-D version of the model was worked
out by Hewett [7]. Leroy et al. [8] then adopted the Sgro and Nielson algorithm
to model the structure of the bow shock. From there, the variations of algorithms
and applications for space physics grew rapidly, as discussed later in this paper.

Hybrid codes have been well represented in the publications from the pre-
vious Simulation Schools. One-dimensional hybrid algorithms are discussed in
some detail in the articles from the first [9] and second [10] schools. These arti-
cles emphasize applications to collisionless shocks and low-frequency waves in the
ion foreshock. At the third school, Quest [11] discussed hybrid codes more gen-
erally, comparing and contrasting several multi-dimensional hybrid algorithms.
As we will see, the field has not advanced much beyond what was described
in that article. Winske and Omidi [12] presented a tutorial on hybrid codes
at the fourth school that once again emphasized, for pedagogical reasons, one-
dimensional codes. In this case, ion beam instabilities were used to illustrate the
main features of hybrid simulation methods. Given that rather complete treat-
ment, the emphasis in this tutorial will be on two-dimensional implementations
and applications. These applications include ion beam instabilities, magnetic
reconnection, and global hybrid simulations of the solar wind-magnetosphere
interaction. Students and young researchers who are not familiar with hybrid
techniques are urged to consult that ISSS-4 article as a reference point to the
following discussion. The Winske and Omidi tutorial concluded with an outlook
of how hybrid codes might evolve in future years. We will use that discussion
as the basis for gauging progress over the past ten years as well as for making
another prediction for the years ahead in Sect. 3: Hybrid codes – future.

Hybrid codes are also discussed in other articles in this volume, based on
the tutorials given at ISSS-6. In particular, Pritchett [13] presents a very lucid
tutorial on particle-in-cell methods generally and discusses the hybrid model in
the context of other plasma kinetic models. Articles in the proceedings of ISSS-6
also consider a number of current applications of hybrid codes [14]–[18].

While the emphasis here is on work presented at ISSS, we also note three
recent review articles that are also of interest. Winske and Omidi [19] discussed
the general issue of the use of kinetic simulations in space plasmas and what
type of simulation model (full particle, hybrid, etc.) is most appropriate under
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various conditions. The strengths and weaknesses of kinetic simulation methods
in general are discussed and some guidance on how to discern between “good”
and “bad” simulations is provided. A more recent review of simulation meth-
ods and space physics applications is given by Pritchett [20]. Omura et al. [21]
summarized relevant work on nonlinear kinetic processes in space plasmas in the
recent URSI quadrennial report. It discusses results of observations, theory and
simulations for a wide variety of phenomena and contains results from a number
of hybrid simulations. On rereading this article, what strikes us most signifi-
cantly is how simulations, whether they be full particle, hybrid, or MHD, have
become so intermeshed with theory and observations in space physics. When
ISSS was established, this was the principal goal. We have often failed to realize
how well we have achieved this objective in the last twenty years.

Hybrid codes with finite electron mass are an interesting extension. This
subject has been covered in depth in a recent monograph [22] that also considers
inertia-less hybrid models. Given that extensive treatment, we will present only
a brief discussion of this modification in the middle of Sect. 2. We have not
included any discussion of hybrid codes that treat the electrons implicitly, which
allows inertia and/or kinetic effects to be easily added in [23], or that deal
with electrostatic phenomena [24]. If the scope of the readers’ interests extends
beyond the narrow confines of this tutorial, we urge them to consult these other
references, as well as the magnetic (e.g., in [25] and [26]), and inertial fusion [27]
literature.

2 Hybrid Codes: Present

2.1 Basic Assumptions and Equations

Hybrid codes arise from the need to model phenomena that occur on shorter time
and distance scales than can be treated by magnetohydrodynamics and yet do
not resolve processes that occur on electron scales (e.g., electron gyro-radius and
electron Debye length scales, inverse electron gyrofrequency and electron plasma
frequency time scales). The relevant scales are then the ion gyro-radius and ion
inertial spatial scales, and inverse ion gyrofrequency time scale. In space, these
length scales typically are on the order of 10’s to 100’s of km and times on the
order of seconds; these ion scales are readily resolved by satellite instrumentation.
To model phenomena on these scales with a hybrid code, as contrasted with a
Hall-MHD code, implies assumptions about the descriptions of the plasma ions
and electrons as well as the electromagnetic fields.

To be consistent with the hybrid model, the ions are treated kinetically, i.e.,
using standard particle-in-cell techniques [12][13][20][28]. Each simulation ion
(charge qi, mass mi) is subject to the usual equations of motion:

mi
dvp

dt
= qi(E +

vp ×B
c

) , (1)

dxp

dt
= vp , (2)
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where E and B, which have values given on a spatial grid, are the electric
and magnetic fields interpolated to the particle location. The updated particle
information is collected at the grid points to determine the ion number density
(ni), charge density (qini), flow velocity Vi and current Ji = qiniVi. (We will
assume one ion species throughout. For multiple species, one accumulates the
quantities for each species separately and then adds them together to determine
the total ion charge density and current.)

In order to eliminate kinetic electron effects, the electrons are treated as an
inertia-less fluid (me = 0). The electron momentum equation is thus:

neme
dVe

dt
= 0 = −ene(E +

Ve ×B
c

)−∇ ·Pe , (3)

where Ve is the electron fluid velocity and Pe is the electron pressure tensor. Ig-
noring effects on the electron Debye length scale further implies that the plasma
is quasi-neutral, so that the electron and ion charge densities are equal:

ene = qini , (4)

where the electron charge is −e and ne is the electron number density. In Eq. (3),
Pe is almost always taken as a scalar, Pe = pe1. Typically, an isothermal or adi-
abatic relation between the pressure and temperature is assumed. For simplicity,
we have also left off resistive coupling between the electrons and ions; this adds
a term eneη · J to the right-hand side of (3), where J is the total current. The
resistivity η is usually taken as a scalar with a constant coefficient. For mo-
mentum conservation, it requires adding −eη · J to the acceleration term in the
ion particle equation of motion (1) as well. We will return to the issues of the
electron pressure tensor and the resistivity later.

Finally, the electromagnetic fields are treated in the low frequency approxi-
mation: Ampere’s law,

∇×B =
4π
c

J =
4π
c
qini(Vi −Ve) , (5)

using (4), and Faraday’s law

∂B
∂t

= −c(∇×E) . (6)

As is done in two-fluid codes, Eq. (5) is used to eliminate Ve in (3) and Eq. (6)
is used to advance the magnetic field in time. Because me = 0, Eq. (3) can be
solved for the electric field directly, so that no time advance of E is needed.
The other Maxwell’s equations, e.g., Poisson’s equation, ∇ · E = 4π(qini −
ene), is satisfied by virtue of the quasi-neutral approximation (4) and boundary
conditions; likewise ∇ ·B = 0 is also satisfied.

Further discussion of the underlying assumptions of the hybrid model is given
in papers describing the various hybrid algorithms, which we will consider in the
next subsection.
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2.2 Numerical Implementations

The numerical implementation of the hybrid model in a simulation code is rela-
tively straightforward. However, as we shall see, one piece is not entirely there,
which leads to various ways to circumvent this problem. Hybrid codes in space
are usually (but not always, e.g., in [29]), done on a rectangular grid. Usually,
a staggered pair of grids is used, with the electric field, plasma density, current,
and pressure located on the vertices of one grid, and the magnetic field on the
vertices of the other grid. This implies that curl E will be given properly on the
B-grid, while curl E will be correct at the location of the electric field.

Given this grid, the ion dynamics are done as in any PIC code: the fields
are interpolated to the particles’ positions to give the correct acceleration and
after the ions are moved, the density and current can be redeposited back to the
grid [12][13][20][28]. Typically, linear weighting is used; higher order splines have
also been employed. As usual, the particle positions and velocities are leapfrogged
in time. In other words, at time step N (denoted by the superscript), the particle
positions xp

N and the fields EN and BN are known, while the particle velocities
are known at the half-time step, N − 1/2. Given EN and BN , at the beginning
of the time step, the velocities can be advanced to time level N + 1/2 and the
particle positions to time step N + 1:

vp
N+1/2 = vp

N−1/2 +
qi
mi

(EN +
vp

N ×BN

c
)Δt , (7)

xp
N+1 = xp

N + vp
N+1/2Δt . (8)

In the process the currents are collected at N + 1/2 and the density at N + 1.
Note that Eq. (7) is implicit in vp

N+1/2, as vp
N can be written as 1/2(vp

N−1/2+
vp

N+1/2) (see Appendix A in [12]).
Most hybrid codes solve the field equations explicitly in time, although im-

plicit methods do exist [7][15][22]. In an explicit scheme, the straightforward way
to advance the fields is to use Faraday’s law (6) and EN to advance the magnetic
field to level N + 1/2

BN+1/2 = BN − cΔt
2

(∇×EN ) . (9)

Recall that the electron momentum equation (3) can be solved for the electric
field, which using (5), can be written as

EN+1/2 = −Vi
N+1/2 ×BN+1/2

c
− ∇p

N+1/2
e

qin
N+1/2
i

− BN+1/2 × (∇×BN+1/2)

4πqin
N+1/2
i

= F(BN+1/2, n
N+1/2
i ,Vi

N+1/2) . (10)

Since we have the ion current and the magnetic field at time level N + 1/2,
and the density (either collected directly at N + 1/2 or use the average between
values at N and N +1), we have all the information needed to evaluate EN+1/2.
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With the newly evaluated EN+1/2, again Faraday’s law can be used to push
B to time level N + 1

BN+1 = BN+1/2 − cΔt
2

(∇×EN+1/2) . (11)

However, the advance of E from time level N+1/2 to N+1 is not so straightfor-
ward. An examination of (10) shows that BN+1 and nN+1

i are known, but not
Vi

N+1. The problem of implementing a good algorithm for hybrid codes that
reduces to how to best calculate EN+1. Much of the rest of this subsection is
devoted to discussing various ways that this has been accomplished.

Historically the first method, which continues to be widely used, is a predictor-
corrector technique [30]–[33]. The basic idea is to: (i) make a prediction of the
fields (denoted by primes) at N + 1; (ii) advance the particles in the predicted
fields in order to compute the ion source terms at time level N + 3/2; (iii) use
that current (and charge density) to compute predicted fields at N + 3/2; and
(iv) use the average of the electric field at N + 1/2 and the predicted field at
N + 3/2 to get EN+1. In equation form, this procedure becomes the following
four steps [31][32]:
(i) the predicted fields

E′N+1 = −EN + 2EN+1/2 , (12)

B′N+1 = BN+1/2 − cΔt
2

(∇×E′N+1) ; (13)

(ii) advance the particles to obtain predicted source terms, V′
i
N+3/2, n′i

N+3/2;
(iii) compute the predicted fields at N + 3/2

B′N+3/2 = B′N+1 − cΔt
2

(∇×E′N+1) , (14)

E′N+3/2 = F(B′N+3/2
, n′i

N+3/2
,V′N+3/2) ; (15)

(iv) Determine corrected fields at N + 1

EN+1 =
1
2
(EN+1/2 + E′N+3/2) , (16)

BN+1 = BN+1/2 − cΔt
2

(∇×EN+1) . (17)

In principle, the process could be repeated to improve the accuracy, but in
practice this is almost never done. This method is still often used because it
gives very good energy conservation and is rather robust. As we shall see later,
however, there can be significant amount of short wavelength whistler noise
generated by the application of this technique, which will require additional
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measures to remove. It is evident that this technique will be somewhat slow,
since one has to move the particles twice each time step. Less evident at this
point in the discussion is that the short wavelength noise problem may also
require a somewhat smaller time step.

The second type of method to advance the electric field to time level N +1 is
an extrapolation of the ion flow velocity (or equivalently the ion current density)
from N + 1/2 to N + 1 [34][35]. Since the other quantities are known at N + 1
already, with an extrapolated VN+1

i , EN+1can be directly evaluated, and the
time-stepping process can proceed to the next cycle. Intuitively this method
may not be as accurate, but it is better than one might expect, as we will show
quantitatively later when we discuss some simple examples, and is often used for
many problems.

The extrapolation of the ion velocity can be done in several ways. First, by
merely using the saved values of VN−1/2

i and VN+1/2
i , one has [35]:

VN+1
i =

3
2
VN+1/2

i − 1
2
VN−1/2

i . (18)

One can also keep VN−3/2
i to improve the accuracy, so that the process becomes

a 4th order Bashford-Adams extrapolation, which is the way this method was
first introduced [34]:

VN+1
i = 2VN+1/2

i − 3
2
VN−1/2

i +
1
2
VN−3/2

i . (19)

Alternatively, one can follow the philosophy of implicit plasma methods and
advance a moment equation to give a better estimate of the ion current [11]. This
method requires accumulating the ion pressure tensor and may need some addi-
tional enhancement for multi-ion species problems, but it has shown promise [36]:

Vi
N+1 = Vi

N+1/2 − Δt
2

(Vi · ∇Vi)
N+1/2

+
Δt

2min
N+1/2
i

(−∇pe
N+1/2 −∇ ·Pi

N+1/2 +
JN+1/2 ×BN+1/2

c
) .

(20)

However, this method requires the accumulation of the ion pressure tensor and
the evaluation of an advective derivative, which would seem to negate main
advantages of using a hybrid code that has particles to calculate the effects of
Pi and the advection already.

In the CAM-CL method, which has become popular in recent years, the ion
current is calculated by doing an extra half time step push using a mixed level
evaluation of the electric field [37]:

V′
i
N+1 = Vi

N+1/2 +
qiΔt

mi2
(E∗ +

Vi
N+1/2 ×BN+1

c
) , (21)

E∗ = F(BN+1, nN+1
i ,Vi

N+1/2) . (22)
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Note that here, as in all of these extrapolation methods, only one push of the
ions each time step is required.

There are also several other hybrid algorithms, which require iterations. The
Horowitz algorithm [38] solves the following (time-centered) set of field equations
iteratively for EN+1 and BN+1, given the source terms at time level N+1/2:

BN+1 = BN − cΔt
2

(EN + EN+1) , (23)

EN+1 = −EN +
1
2
F(

BN + BN+1

2
, n

N+1/2
i ,Vi

N+1/2) . (24)

One starts the iteration by assuming EN+1 = EN ; typically 5-10 iterations are
needed to give convergence.

Another iteration method involves a combination of the velocity extrapo-
lation and predictor corrector [39]. After the velocity is estimated to calculate
EN+1, the particles can be moved in the new fields to give a better estimate for
Vi

N+1 that can then be used to recompute EN+1; the system can be iterated
until the EN+1 is in some sense converged.

While the emphasis here so far has been on the advance of the electric field,
it should also be noted that there have improvements in advancing the magnetic
field. Because of the generation of short wavelength whistlers, the time step
restricting the advance of the magnetic field is smaller than that for the ions
(which is a small fraction of the ion gyroperiod). Writing Faraday’s law (6) in
terms of the electric field (10), we have

∂B
∂t

= −c(∇×E) = ∇× F(B, ni,Vi) . (25)

The quantities on the right-hand side are all evaluated at time level N +1/2,
except for B. One can then advance this equation from N to N + 1 with B on
the right-hand side changing, using a 4th-order Runge-Kutta scheme [39]; i.e.,
(suppressing the last two arguments of F)

BN+θ = BN +
Δt′

6
(K1

N + 2K2
N + 2K3

N + K4
N ) , (26)

K1
N = −∇× F(BN ) , (27)

K2
N = −∇× F(BN +

Δt′

2
K1

N ) , (28)

K3
N = −∇× F(BN +

Δt′

2
K2

N ) , (29)

K4
N = −∇× F(BN +Δt′K3

N ) , (30)

using a subcycled time interval, Δt′ = Δt/θ.
Another approach that is used in the CAM-CL algorithm is to keep two

copies of the magnetic field, one at the full time step and one at the half time
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step and leapfrog these along in time, again subcycling if needed [37]. The two
field solutions can be averaged after a given number of time steps.

Finally, it should be mentioned that if one ignores the electron pressure, the
electric field can be eliminated entirely, resulting in a simpler algorithm [40].
This method is noteworthy in that a Richardson extrapolation (to Δt → 0)
is used in the particle velocity advance equation to dramatically improve the
energy conservation. Two solutions, one advanced one time step (Δt) and the
other advanced two half time steps (Δt/2) are compared and used to determine
what the particle velocity at the next time step should actually be. But this is
somewhat expensive, as two sets of particles are needed.

Before going on to numerical examples, we digress a bit to discuss hybrid
codes with finite electron mass. The inclusion of electron inertia changes the
whistler dispersion relation at short wavelengths, so that the real frequency no
longer varies as the square of the wavenumber. If one is interested in resolving
spatial scales that are a small fraction of the ion inertial length, this change of the
wave phase velocity can reduce numerical problems at short wavelengths, so that
one may wish to consider including me �= 0 effects. There are several ways that
this can be accomplished. The recently published monograph by Lipatov [22] is
an excellent reference where the details can be found.

Hewett and Nielson [41] include electron inertia effects by a process that in-
volves separating the electron current into its longitudinal (curl-free) and trans-
verse (divergence-free) components. An equation for the total current can be
obtained by summing the electron and ion momentum equations. Taking the
divergence of this summed equation, and using the quasi-neutral condition ex-
pressed as ∇ · J = 0, one obtains an expression that can be solved for the
longitudinal electric field, i.e., a generalized Poisson’s equation for quasi-neutral
plasmas. In similar fashion, the longitudinal part of the electron current, being
curl-free, can be expressed as a scalar potential, Jel = −∇V . The divergence of
this expression yields a Poisson equation, ∇2V = −∇·Jel = −∇·Jl = ∇·Ji; the
right-hand side is evaluated directed from the particle ions. Thus, knowing the
total current, the ion current, and the longitudinal electron current, one easily
obtains the electron transverse current (Jet). Jet is advanced in time and used
to calculate the vector potential A (or alternatively the time derivative of Jet
is advanced and used to directly calculate the transverse electric field Et). The
method is straightforward, but a number of Poisson solves are needed to separate
the transverse and longitudinal parts of the current and calculate the electric
field.

In recent years, it has become more common to include electron inertia effects
solving a set of generalized field equations [15]. One derives this set of equations
from (3), but where the left-hand side is not set to zero, along with Eq. (6), by
assuming:

B̂ = B− δ2e∇2B , δe = (c2me/4πe2)1/2 (31)



Hybrid Simulations 145

and taking the curl of Eq. (3) to give

1
c

∂B̂
∂t

= −(∇× Ê) , (32)

where

Ê = −Ve ×B
c

− ∇ ·Pe

ene
− me

e
(Ve · ∇)Ve . (33)

This set of equations is not exact; we have dropped terms proportional to
me∂ne/∂t and me∂Vi/∂t. It is argued that on short, electron spatial scales,
the ions are nearly immobile and the neglected density and ion velocity varia-
tions are small [15][22][42][43]. The nice feature of Eqs. (31–33) is that one again
has one equation for the time advance of the (generalized) magnetic field and
a second equation for the (generalized) electric field that does not contain an
explicit time derivative. These equations can be advanced in time using the same
methods discussed previously.

Finite electron mass hybrid codes have been applied to a variety of prob-
lems, ranging from instabilities, e.g., the lower hybrid drift instability [41], colli-
sionless shocks and solar wind-comet interactions [15][22], and magnetic recon-
nection [42][43]. The various calculations show the need to include finite elec-
tron mass to excite some instabilities, to generate strong whistler turbulence at
shocks, and to show the role of short-scale physics in the reconnection process.
It should be noted, however, that the fluid electron approximation eliminates
electron Landau damping that tends to suppress whistler growth at short wave-
lengths. Thus, one may still want to use additional smoothing or some resistivity
(but keeping the resistive length small compared to the cell size) to reduce the
amplitude of the short wavelength fluctuations. And the generalized equations
for solving for the electromagnetic fields with me �= 0 should be compared with
solutions of the full equations [41] for realistic test problems to check that the
neglect of some of the time-dependent ion terms is indeed valid.

We emphasize that all of the methods discussed in this section work with
various degrees of success that may also depend on the problem under consider-
ation. It is best to keep several algorithms in your toolbox and try them all out
when encountering a new application.

2.3 Examples

We next compare results from hybrid simulations based on two commonly used
hybrid algorithms for a simple test problem. We show the potential tradeoff
of speed versus accuracy. We go on to discuss the issue of short wavelength
whistler noise and ways to suppress it. We also discuss a more complex test
problem (reconnection in 2-D), comparing results from hybrid and Hall-MHD
simulations. The possible use of hybrid techniques for more global problems
raises enough issues that we will consider it in a separate section (2.4 Global
Hybrid Calculations).
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For the first comparison, we use two versions of the hybrid code we employ at
Los Alamos. One version uses the standard predictor corrector scheme. The other
uses velocity extrapolation along with a subcycled advance of the magnetic field
using a 4th-order Runga-Kutta integration. We consider relatively small systems
(128 × 128 cells, 50 particles per cell) with periodic boundary conditions to
provide some illustrative comparisons. The test problem concerns the excitation
of unstable, oblique Alfvén/ion cyclotron waves driven by cold, relatively slow ion
beams that are found in the plasma sheet boundary layer and the solar wind [44]–
[48]. These waves appear in the upstream region of slow shocks in the magnetotail
and can be responsible for ion heating that occurs both upstream and in the
shock transition. They also can provide ion heating in the solar wind. For this
problem, results of two-dimensional simulations are shown in order to compare
plasma and wave quantities and the effect of varying numerical parameters.

Specifically, we assume two equal density ions beams streaming relative to
each other along the magnetic field (x-direction) with velocities of ±VA (the
Alfvénvelocity based on the total ion density). The beams have βi‖ = βi⊥ =
0.025 (with β based on the total ion density, and parallel and perpendicular are
in reference to the magnetic field direction), and Te = Ti, with the electrons
treated adiabatically with γ = 5/3. The system length in both the x and y
directions is 48c/ωi with ωi the ion plasma frequency based on the total ion
density. The calculations employ 128 × 128 cells, with 25 particles per cell for
each ion species. The simulations use a resistivity (normalized to 4π/ωi), usually
η = 10−6, corresponding to a resistive length about 1% of the cell size. In
the velocity extrapolation runs, the time step is ΩiΔt = 0.05 (Ωi is the ion
gyrofrequency); the predictor-corrector runs require a smaller time step, ΩiΔt =
0.02, because of the persistence of short wavelength fluctuations. The predictor-
corrector simulation smoothes the source term during both the predictor and
corrector cycles; the velocity extrapolation simulation smoothes the source terms
once or twice each time step. To obtain the smoothed value of a quantity at each
grid point, we take one-quarter of the original value plus one eighth of the values
of the four nearest neighbors and one-sixteenth of the values of the next four
nearest neighbors.

Figure 1 shows results of two hybrid simulations comparing the velocity
extrapolation (solid curves) and predictor/correct (dashed curves) algorithms.
Plotted are time histories of the magnetic field fluctuations in the top panel (nor-
malized to the ambient magnetic field) and the parallel and perpendicular ion
temperatures (normalized to their initial values) in the middle panel. The mag-
netic fluctuations grow exponentially, saturate a modest level, (δB/Bo)2 � 0.08,
oscillate, and then eventually decay. The ions are heated strongly in the per-
pendicular temperature, and much less in the parallel direction, consistent with
earlier 1-D and 2-D simulations of this instability [45]. The power spectra of the
fluctuations at Ωit = 100 as a function of kx are shown in the bottom panel. The
spectra exhibit a broad peak of waves at long wavelength, with a steady fall-off
at higher wavenumbers. The unstable waves grow slightly earlier in time in the
predictor-corrector run, and show similarly time-shifted nonlinear oscillations



Hybrid Simulations 147

Fig. 1. Results of simulations of the Alfvénion beam instability comparing a velocity
extrapolation algorithm (solid curves) with a predictor/corrector algorithm (dashed
curves), showing magnetic field fluctuations (top panel), parallel and perpendicular
ion temperatures (middle panel), both as a function of time, and power spectra of the
magnetic fluctuations as a function of kx at Ωit = 100. Both calculations use the same
normalized resistivity, η = 10−6.

after saturation. The predictor-corrector run also shows slightly more perpen-
dicular ion heating and a slight enhancement to the fluctuation level (except
at the shortest wavelengths where it is reduced by the extra smoothing in this
case).

Figure 2 compares profiles of the Bz magnetic field component (normalized
to Bo) versus x at y = Ly/2 at various times for these simulations. At Ωit = 50,
at the end of the period of exponential wave growth, the wave profiles are regular
in shape and very similar in the two calculations. By Ωit = 100, the instability is
into the nonlinear stage, but one can still see correspondence between the various
peaks in the wave profiles, which have evolved into rather complex wave-forms.
At Ωit = 150, the wave spectra are evidently dominated by longer wavelength
modes and the correspondence between individual peaks has been phase-mixed
away to a large degree.

Figure 3 compares results for various velocity extrapolation runs in which
the resistivity and/or the smoothing is changed. The solid curves correspond
to the same case as shown in Fig. 1. In this run, the normalized resistivity is
η = 10−6 and the source terms are smoothed once each time step. A second
run in which a second smoothing operation is included each time step is shown
as the dashed lines. In this case, the excitation and growth of the fluctuations
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Fig. 2. Further results of the simulations given in Fig. 1, showing profiles of Bz versus
x at y = Ly/2 at various times; solid curves correspond to the run using the velocity
extrapolation algorithm, dotted curves to the predictor-corrector run.

is somewhat delayed due to the extra smoothing. In the nonlinear regime, the
extra smoothing gives rise to enhanced magnetic field fluctuations at Ωit = 100,
which occur at longer wavelengths (as shown in the bottom panel). The third set
of dotted curves correspond to a run in which two smoothes are employed and
the resistivity is reduced by a factor of 10. In this case, there is a larger level of
short wavelength fluctuations and consequently more perpendicular ion heating.
At late times, the short wavelength modes increase the overall fluctuation level
dramatically, as shown in the top panel. (With only one smoothing operation
at this value of the resistivity, the short wavelength modes grow up earlier and
the calculation does not run to completion.) Energy conservation was monitored
for the runs. In the first case (solid curves), total energy (minus the energy in
the uniform magnetic field) decreases by 1.3% by the end of the run. In the
second case, with extra smoothing, the energy decrease is reduced to -0.75%. In
the third case, in which the resistivity is reduced, the total energy increases by
9.6%, evidently due to the enhanced levels of short wavelength fluctuations and
associated ion heating.

Figure 4 shows similar tests for predictor-corrector runs in which only the
resistivity is changed. The dashed curves correspond to the same case shown in
the Fig. 1 with η = 10−6; the dashed lines correspond to a run in which the
resistivity is reduced by a factor of 10. The time histories of the magnetic field
fluctuations and parallel ion heating agree quite well in the two calculations.
The perpendicular ion heating increases by about 20% when the resistivity is
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Fig. 3. Comparison of simulation results using the velocity extrapolation algorithm, in
the same format as Fig. 1 for three runs: (solid curves) η = 10−6 with one smoothing
of the source terms each time step, (dashed curves) η = 10−6 with two smoothes, and
(dotted lines) η = 10−7 with two smoothes.

reduced, again due to the increased level of short wavelength fluctuations, as
shown in the bottom panel. Energy in the system for the higher resistivity case
is reduced by about 2.9% by the end of the run. In the lower resistivity case,
due to the excitation of short wavelength modes, the total energy increases by
about 4.5%.

For a second test problem, we compare results of 2-D hybrid simulations with
those from Hall-MHD calculations for reconnection in a (Harris) current sheet.
As one can see from the generalized Ohm’s law (3), the electric field responsible
for reconnection can arise from any of the last three terms:

E = −Ve ×B
c

− ∇ ·Pe

qini
+ ηJ− me

e

dVe

dt
. (34)

In many hybrid calculations with me = 0, one uses a localized resistivity so
that the consequences of reconnection in 3-D [49] or in a large 2-D tail configu-
ration [50]–[54] can be explored. We have already discussed how to include the
last term if me �= 0. If one chooses to assume me = 0 and not to insert a large
localized resistivity, one needs to include, in both the hybrid (and Hall-MHD)
calculations, the full electron pressure tensor in (34) in order to initiate the re-
connection process [55]–[57]. The electron pressure is advanced via the following
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Fig. 4. Comparison of predictor/corrector calculations, in the same format as Fig. 1,
for runs with normalized resistivities of η = 10−6 (solid curves) and 10−7 (dashed
curves).

equation that comes from a moment expansion of the Vlasov equation:

∂Pe

∂t
= −Ve · ∇Pe −Pe∇ ·Ve −Pe · ∇Ve − (Pe · ∇Ve)

T

−Ωe[Pe × b̂ + (Pe × b̂)
T
]−∇ ·Q , (35)

where b̂ = B/Bo and the superscript T indicates the transpose matrix. The term
in square brackets involves the electron mass; it can either be treated implicitly,
or combined with the last term, which is then replaced by a phenomenological
relaxation term that models rapid electron-scale processes that reduce the non-
gyrotropicity:

⇒ −Ωe

τ
(Pe − pe1) , (36)

where pe = 1
3Tr(Pe) and τ ∼ 1 is on the order of electron cyclotron time.

The simulations are performed in the (x, y) plane in which x̂ is the direction
normal to the sheet and ŷ is along the sheet. An initial perturbation to the Harris
equilibrium By = Bo tanh{[x− lx/2]/α} is employ, where lx is the width of the
simulation domain and α is the half-thickness of the current sheet. The perturbed
normal magnetic field Bx ∼ sin{2π[y− ly/2]/ly} exp{−[x− lx/2]2/α2}, where ly
is the length of the simulation domain, ensures the system evolves into a non-
linear stage quickly. The boundary conditions are periodic on the y-boundaries;
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on the x-boundaries the velocity and field components transverse to the local
magnetic field (i.e., the x and z components) vanish.

For the hybrid simulations the spatial sizes are 10 × 10 (c/ωi)2 (for a cur-
rent sheet with half thickness α = 0.4 c/ωi) and 20 × 20 (c/ωi)2 (for α =
0.8 c/ωi), both consisting of 128× 128 grids; the initial perturbation amplitudes
are Bx/Bo = 0.15 and 0.3, respectively. The lobe plasma beta is 0.2 and the
initial ion-to-electron temperature ratio is Ti/Te = 5. The simulations include a
uniform background ion population (20 background ions per grid) whose tem-
perature is the same as the sheet ions (an average of 20 sheet ions per grid). ωi

is the ion plasma frequency based on the asymptotic plasma density at the lobe.

Fig. 5. Results of hybrid simulations of reconnection at Ωit = 20 and 30 showing color
contours of Bz and the three components of the total current; magnetic field lines are
overlaid on the plot.

Figure 5 shows the magnetic field and current configuration during the non-
linear stage (at tΩi = 20 and 30) from the hybrid run (the spatial size is
10 × 10 (c/ωi)2 and α = 0.4 c/ωi). Overlaid on the magnetic field lines in the
simulation plane are color contours of the out-of-plane magnetic field Bz and
the current densities Jx, Jy, and Jz plotted on a linear scale.

For the Bz contour plots the direction of Bz is along ẑ in the red regions but
along −ẑ in blue regions. The same color legend applies to the current density
plots. Intense currents flow toward the X point along ŷ and −ŷ directions in
localized regions at the center of the sheet (see the Jy plot) and diverge from
the X point in the cross-sheet directions x̂ and −x̂ (seen near the X point in the
Jx plot). The current pattern for Jx and Jy is consistent with the quadrupole
configuration of the out-of-plane magnetic field Bz. As the reconnection pro-
ceeds, the out-of-plane current distribution evolves to a configuration in which
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Fig. 6. Color contours of the xz and yz components of the electron pressure tensor
from a hybrid calculation at Ωit = 40.

Jz intensifies at localized regions in the center of the sheet away from the X
point.

Global distributions of the electron pressure tensor terms P e
xz and P e

yz from
the hybrid simulation (the spatial size is 20×20 (c/ωi)2, α = 0.8 c/ωi atΩit = 40)
are displayed in Fig. 6. The red and blue regions indicate maximum and mini-
mum values, respectively. The magnitudes of the off-diagonal terms are relatively
small: the peak values of these off-diagonal terms are a few percent of the peak
values of the diagonal terms; yet their spatial configurations are clear. We will
discuss their contribution to the reconnection electric field following the exami-
nation of the electric field configuration.

Next, we compare the hybrid and Hall-MHD simulation results for the 2-D
reconnection problem. The Hall-MHD calculations use the same basic assump-
tions/equations and the same electric field and the electron pressure tensor model
as in the hybrid calculations. Thus Eqs. (3) - (6) and Eqs. (32) and (33) remain
the same. However, the ion kinetic treatment for each individual ion particle in
Eqs. (35) and (36) is replaced with a fluid moment description in the Hall-MHD
calculations. The momentum equation,

nmi
∂Vi

∂t
= −nmi(Vi · ∇)Vi −∇pi −∇ ·Pe +

J×B
c

, (37)

describes the ion fluid motion. As in most fluid simulations, a scalar ion pressure
pi is used, and thus ion finite Larmor radius effects are not modeled. The plasma
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density n is computed from the continuity equation

∂n

∂t
= −∇ · (nVi) , (38)

and pi is obtained from

∂pi

∂t
= −∇ · (Vipi)− (γ − 1)pi(∇ ·Vi) (39)

where γ = 5/3 is the ratio of the specific heats.
The Hall-MHD code used here was developed with numerical methods similar

to those used in conventional hybrid codes [12][36][56] so that direct comparison
of the results of the two codes could more easily be carried out. Spatial grid
quantities in the code are defined on the same set of staggered finite-difference
meshes as described in section B and the time differencing follows a conventional
staggered leapfrog method. The magnetic field B is advanced in time using a
fourth-order Runge-Kutta scheme with subcycling [36]. In each time step used to
advance the fluid moments (velocity, density, and pressure), five to ten substeps
are used, typically, to update the fields. A smoothing routine is used instead of
the conventional second-order viscosity (i.e., ∼ ν∇2V); a sixth order hypervis-
cous dissipation, ∼ ν(∇6

x+∇6
y)B, is employed in the magnetic field equation to

damp out fluctuations on very short spatial scales. The Hall-MHD simulations
use the same boundary conditions and simulation parameters. Since the fluid
code runs relatively quickly, 256× 256 grids are used for the 20× 20 (c/ωi)2 run
for a better resolution.

Figure 7 shows a comparison of the global configuration of the electric field
components Ey and Ez obtained from the hybrid run (left panels) and the Hall-
MHD run (right panels). Since reconnection proceeds faster in the Hall-MHD

Fig. 7. Comparison of color contours of the electric field components Ey and Ez from
hybrid (left panels) and Hall-MHD (right panels) simulations at comparable times.
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run due to the absence of noise, the hybrid results at tΩi = 40 are compared
with the Hall-MHD results at tΩi = 30. The color legend is the same as in Fig. 6,
i.e., Ey and Ez have positive values in the red regions and negative values in
the blue regions. General agreement is seen in the two calculations. Both runs
show that the Ey component pointing away from the X point is enhanced in thin
localized regions. These regions of strong Ey diverge from the X point and then
follow the magnetic field lines at the edge of the sheet. The out-of-plane electric
field Ez is significant mainly in the near-X-point region. The term −Ve × B
in Eq. (31) provides the main contribution to the global electric fields, except
at the X point where the magnetic field vanishes. Eq. (31) indicates that at
the X point spatial gradients of the off-diagonal electron pressure tensor terms
−(∂P e

xz/∂x+ ∂P e
yz/∂y) provide a finite contribution to the Ez field (note that

both η and me are set to zero). Thus this collisionless electron viscous effect
plays the role of the conventional localized resistivity at the X point.

Overall agreement between the hybrid and Hall-MHD calculations is found
from results of the 2-D reconnection problem in the reconnection rate, the global
configuration of the currents and the fields, and the properties of the electron
pressure [58]. However, in the Hall-MHD code ion dynamics are described by
the ion momentum equation with a scalar ion pressure. Thus, ion finite Larmor
radius effects contained in the off-diagonal terms of the ion pressure tensor are
not modeled in the Hall-MHD code. This results in a significant difference in
the spatial configuration of the out-of-plane ion velocity vz from the two types
of simulations as illustrated in Fig. 8: The vz structure from the hybrid simula-
tion (bottom panel) shows a reduction of the ion z-momentum at the X point
as reconnection proceeds; in contrast, vz from the Hall-MHD run (top panel) is
peaked at the X point at this time (tΩi = 20) and remains so peaked to the
end of the run. It is shown that the ion finite Larmor radius effects are im-
portant to correctly model the ion out-of-plane momentum transport from the
X point and can be modeled efficiently in Hall-MHD simulations in a predic-
tor/corrector manner that uses particle ions to implement the ion gyro-radius
corrections [59][60].

2.4 Global Hybrid Simulations

As stated in previous sections of this paper and illustrated in the references,
hybrid simulations have been conducted and shown to be extremely beneficial
in theoretical investigations of the bow shock, foreshock, magnetosheath, mag-
netopause, slow shocks in the magnetotail and wave particle interactions in the
plasma sheet boundary layer. An overwhelming majority of these studies have
been in the form of 1-D or planar 2-D simulations with specific emphasis on one
of these topics. The results have clearly established the significance of ion ki-
netic physics in the temporal and spatial structure of these regions of geospace.
By noting that these regions fall in the outer part of the magnetosphere (i.e.
R > 5 − 6RE) and that they are not heavily influenced by the ionospheric in-
teractions or plasmas, we can construct a global model that would allow for a
more comprehensive investigation of these regions. Specifically, this would allow
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Fig. 8. Color contours of the ion z-velocity component at comparable times in Hall-
MHD (top panel) and hybrid (bottom panel) simulations, showing differences at the
X-point due to finite ion-gyroradius effects.

taking into account curvature and nonlocal effects as well as coupling between
various parts of the outer magnetosphere (e.g., see [16]). While two- and three-
dimensional global hybrid simulations have been performed to investigate the
interaction between solar wind and Venus or Mars [61]–[63], the interaction is
primarily with the respective ionospheres, where solar wind massloading is the
dominant process. Also, the size of the interaction region is considerably smaller
in comparison to the size of the Earth’s magnetosphere, thereby making the CPU
and memory requirements more manageable, even for computers of a decade ago.
In contrast to Venus and Mars, a full investigation of the Earth’s magnetosphere
requires the inclusion of both its intrinsic magnetic field as well as the ionosphere.
This, plus the large size of the magnetosphere, makes global hybrid simulations
of this system considerably more complex and computationally more demanding.

A schematic of the global solar-wind magnetosphere simulation model is il-
lustrated in Fig. 9. The hybrid simulations described here are two-dimensional in
space, while all three components of the electromagnetic fields and ion velocities
are retained [16][64]. Both the predictor-corrector field solver and ion velocity
extrapolation methods described in subsection 2.B have been implemented, al-
though the latter method is used commonly to reduce computation time. Due
to the 2-D nature of the calculations, the Earth’s magnetic field is represented
by a line-dipole (see, e.g., [65]), which is placed within the simulation box at an
arbitrary point. This dipole forms the center of a circular (Inner) region, which
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Fig. 9. The 2-D model used for global simulations. The solar wind is injected from the
left boundary continuously during the run. The Earth’s magnetic field is represented
by a line-dipole that is placed at the center of a circular region which falls outside of
the simulation domain.

falls outside of the simulation domain in that all particles crossing the “Inner
Boundary” are lost and the electromagnetic fields are not solved for. This region
represents the inner part of the magnetosphere that the current model does not
appropriately describe; a similar approach is also taken in MHD simulations.
Within the Inner Region, the electric field is set to zero and the magnetic field is
kept at a constant level, which either corresponds to the dipole field strength at
the Inner Boundary or is simply set to zero. More sophisticated sets of boundary
conditions for the particles and the electromagnetic fields at the Inner Boundary
could be applied to model magnetosphere-ionosphere coupling. The solar wind
plasma is initially distributed within the simulation box and is also continuously
injected from the X = 0 (left) boundary. This plasma is allowed to leave the
system from all three remaining boundaries. The interplanetary magnetic field
(IMF) is either in X-Y or X-Z plane making an arbitrary angle with the X-
axis. The electric field at the X = 0 boundary is set to the value of the motional
electric field (V × B) in the solar wind. The remaining three boundaries have
open or floating field boundary conditions in order to allow various waves and
disturbances to leave the system. Specifically, the normal component of the elec-
tric field is set to zero on these boundaries, while the transverse components of
the electric field are continuous across them. Typically, the cell size is the proton
inertial length in the solar wind, which corresponds to ∼ 100 km. The choice of
time step varies from run to run depending on the solar wind conditions and the
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Fig. 10. Ion temperature as a function of X and Y in a representative global hybrid
simulation. As denoted, regions representing various parts of the outer magnetosphere
are formed in the simulations. The size of the simulation is roughly 19RE × 19RE .

dipole field strength. Typically, however, the time steps needed for numerical
stability are much smaller than what one might estimate based on cell size and
solar wind velocity.

Although initially the plasma is uniformly distributed in the simulation box,
the evolution of the system in time results in the formation of regions and bound-
aries representing various parts of the outer magnetosphere. This is illustrated
in Fig. 10, which shows the ion temperature, as a function of X and Y , for a
representative run. In this run, the IMF lies in the X-Y plane and is almost per-
pendicular to the X-axis (θ = 85o). The figure shows the formation of the bow
shock, ion foreshock, magnetosheath, magnetopause, the lobe and the plasma
sheet. In this run, the simulation box is 1200 ion inertial lengths (in the solar
wind) inX and Y directions and consists of 1,440,000 cells. Initially, each cell has
9 macroparticles but this number changes as various parts of the magnetosphere
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with corresponding different plasma densities are formed. Assuming the ion in-
ertial length to be 100 km, the size of the simulation box is about 19RE×19RE ,
which is clearly smaller than the actual size of the magnetosphere. Similarly,
because of the 2-D nature of the simulations, the system does not necessarily
reach a steady state solution. This implies that these simulations cannot be
used for determining the standoff position of the various discontinuities in the
magnetosphere. On the other hand, the physical scale lengths associated with
these boundaries (e.g. the thickness of the bow shock or the magnetopause) are
appropriately modeled [16][64] and can be compared directly with spacecraft
observations. Similarly, many details of the solar wind interaction with the mag-
netosphere that require a kinetic treatment, such as transport at the dayside
magnetosphere, are properly modeled in these simulations.

Figure 10 clearly illustrates that the simulated magnetosphere bears consid-
erable resemblance to the actual magnetosphere. This similarity goes beyond
simple appearances; examination of plasma and field properties within the sim-
ulated magnetosphere show quantitative agreement with the spacecraft observa-
tions. For example, examination of the magnetic structure of the simulated bow
shock in the quasi-perpendicular geometry shows considerable similarities to that
of 1-D hybrid simulations as well as magnetometer data (e.g., see [19]). Simi-
larly, evolution of the ion distribution functions across the shock reproduce the
major features expected based on theory and observations [66]. This is demon-
strated in Fig. 11, which shows the ion distribution functions in the upstream
(top left), within the shock layer (top and bottom right) and the downstream
regions (bottom left). The distribution functions within the shock layer show
the characteristic presence of the gyrating ions which come about as part of the
dissipation process (e.g., [8]). Evidently, the detailed study of such features in
the simulations, coupled with more highly resolved observations through clusters
of spacecraft, will transform our view of the dynamic magnetosphere.

The similarity between the simulated and actual magnetosphere provides a
strong argument for the general validity of the model described here and shows
the considerable potential it offers in understanding the dynamic and complex
behavior of the magnetosphere under various solar wind conditions. This general
agreement, however, is not a guarantee that numerical artifacts do not affect the
specifics of a particular run, and the daunting task of assuring the physical nature
of the results is a major part of the simulator’s overall activities.

In a given global hybrid simulation of the magnetosphere, the simulation
domain consists of many distinct regions differing in magnetic and plasma pa-
rameters. The usual tests devised for simpler systems to assess the significance
of numerical artifacts in a given simulation run (e.g., conservation of energy,
Courant condition) are inadequate in the highly inhomogeneous but coupled
magnetospheric system. For instance, it can occur that results in one region of
the simulation domain are physical but the results in another region are not.
This is because the plasma and field properties change considerably within the
magnetosphere (both actual and simulated), and therefore numerical conditions
that are satisfied in one region may not be satisfied in another. An example of
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Fig. 11. Evolution of the ion distribution function across the quasi-perpendicular por-
tion of the shock in a global simulation. This evolution is consistent with spacecraft
observations at the bow shock and is similar to that seen in 1- and 2-D local hybrid
simulations.

this is the drastic change in the plasma density from the magnetosheath into the
lobe, which results in change in proton inertial length by an order of magnitude.
In the case of the simulated lobe, the number of macroparticles in a cell may be
one, or even less, requiring additional provisions to assure numerical stability.
Since the hybrid algorithm does not contain electrostatic effects, the particle
density in a given cell is never allowed to go below a certain base level. In the
case of a simulated lobe, the presence of a cold, tenuous, and stationary plasma
in the tail is assumed, much like the real magnetosphere; however, the plasma
density in a cell is not allowed to fall below 5% of the solar wind density. Given
the complexities involved, the best way of assuring the physical nature of the
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results is through conducting many test runs and detailed examination of the
results. This makes the process quite time consuming, but fortunately with the
ever-increasing speed of the computers, this task is becoming more and more
manageable.

3 Hybrid Codes: Future

In this tutorial, we also speculate on the future development and use of hybrid
codes for space physics applications, as is already evident to some degree from
the many papers at ISSS-6. We can see significant progress occurring in five
general areas [12][19][67]: (1) larger and more complex simulations, (2) inclusion
of more physics, (3) improvements in diagnostics for better physical insight and
comparison with data, (4) algorithm development for massively parallel comput-
ers, and (5) linking hybrid and fluid codes together. Some examples of recent
past progress and future work in these areas include the following.

(1) The availability of faster CPUs, more memory, etc. will lead to larger
scale simulations. Such calculations will include larger regions of space, e.g., the
dayside magnetosphere [16][64], the magnetopause [17][68]–[70] and the magneto-
tail [50][54][71][72]. In addition, three-dimensional effects, and/or more complex
multi-species problems can be investigated, such as the solar wind interaction
with comets [14][73][74] unmagnetized planets [61]–[63], asteroids, etc., as well as
modeling kinetic processes in the expanding solar wind [75], beyond that which
is presently available. We have already shown the potential, as well as some of
the difficulties, for improved understanding of nonlocal processes through global
hybrid simulations in the previous section.

(2) More complex physics models may include, for example, semi-collisional
plasmas, such as occur in the polar region, where the outflowing plasma is colli-
sional near the Earth and becomes less so as it flows outward [76] and at comets.
This can involve new types of collision models, such as collision-field methods in
which the collision “force” is treated as a grid quantity [77][78]. We have already
discussed another possibility: namely, the use of hybrid codes to understand new
electron and ion kinetic effects that occur near the reconnection site, which can
be modeled in Hall-MHD and MHD codes.

(3) Improvements in diagnostics are likely to come through the use of com-
mercial products, like IDL or EnSight, as the development of major visualization
tools, especially in 3-D, is far too expensive for any particular research group.
Hybrid codes offer unique possibilities for development of diagnostics that exam-
ine ion distribution functions, ion-scale fluctuations, etc., which can be expressed
in a form convenient for comparing with data. This will be particularly useful
for understanding spatial and temporal correlations between data from several
different satellites, e.g., Cluster II, and global simulations.

(4) Computers that consist of 1000’s of linked processors seem to be the most
economical pathway for large scale computing. Again, these can be very expen-
sive machines that only the largest institutions can afford or they can be a group
of inexpensive PC’s or Mac’s that are ganged together [79]. Understanding how
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to write algorithms that take advance the particular system’s unique architec-
ture can be time-consuming, but can pay off in the long run. The challenge for
hybrid (and other PIC) codes on massively parallel architectures is to balance
the load between processors for pushing the particles and to break up the com-
putational domain in a convenient manner [80]. For smaller scale problems, one
can use the various processors to push the particles, solve the field equations
over the entire domain on one processor, and distribute the field information to
the other processors [27] in a very efficient manner.

(5) Finally, there is the issue of including kinetic physics in large-scale fluid
calculations for developing realistic space weather codes. The required speed of
such predictive codes precludes just doing global hybrid simulations [16][64]. As
we have discussed earlier, kinetic effects found from hybrid simulations can be
modeled in Hall-MHD codes [58][59][60]. In turn, a Hall-MHD code can be em-
bedded in a global MHD code [60][81], thus providing an efficient way to include
kinetic effects in a large-scale fluid code. Embedding an actual hybrid simulation
in an MHD code would seem to be much more complex, given the disparate time
and spatial scales between an ion kinetic model and an MHD model. In prin-
ciple, this might be done be running the calculations concurrently on separate
machines and exchanging appropriate boundary information to initialize the hy-
brid calculation or to update the MHD simulation each time step. It certainly
provides the ultimate “grand-challenge” problem for graduates of ISSS-6!
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Hall Magnetohydrodynamics - A Tutorial
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Abstract. Over the past fifteen years it has become increasingly clear that Hall mag-
netohydrodynamics plays a crucial role in many space and laboratory plasma processes:
magnetic reconnection, sub-Alfénic plasma expansions, and plasma opening switches to
name a few. Hall magnetohydrodynamics is important for plasma dynamics on length
scales less than the ion inertial scale length but greater than the electron inertial length.
On these scales the ion and electron motions are decoupled; the electrons remain frozen
to the magnetic field but the ions are not. In this paper we provide a basic overview of
Hall magnetodydrodynamics with an emphasis on numerical methods. We also provide
several concrete examples of Hall dynamics: whistler waves, Hall drift waves, plasma
opening switch dynamics, and three dimensional magnetic reconnection.

1 Introduction

Hall magnetohydrodynamic (MHD) theory has been used to describe and under-
stand a variety of interesting space and laboratory plasma phenomena over the
last two decades. The theory has been successfully applied to the structuring of
sub-Alfvénic plasma expansions [1,2,3,4,5,6,7] and to rapid magnetic field trans-
port in plasma opening switches [8,9,10,11,12,13,14,15,16,17]. In recent years it
has become evident that Hall physics plays a critical role in magnetic reconnec-
tion processes [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] and this
has spurred renewed interest in this subject. Generally speaking, the theory is
applicable to phenomena occurring on length scales shorter than an ion inertial
length, and time scales shorter than an ion cyclotron period. In this paper we
will provide an overview of the underlying physics associated with Hall physics,
discuss numerical techniques to incorporate the Hall term into an MHD code,
and describe several applications of Hall MHD to space and laboratory plasmas.

2 Hall MHD: Basic Equations and Wave Modes

The essence of Hall MHD physics is contained in Ohm’s law. The generalized
form of Ohm’s law can be written as [37]

me

ne2
∂J
∂t
− 1
ne
∇ · P e = E +

1
c
V ×B− 1

nec
J×B− J/σ (1)

where σ is the plasma conductivity. We simplify (1) by assuming L >> c/ωpe,
L >> ρe, and σ → ∞ where ωpe is the electron plasma frequency, ρe is the
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electron Larmor radius, and L is the scale length of the plasma. These assump-
tions allow us to neglect the electron inertia and electron pressure terms, and
the conductivity term. We then obtain

E = −1
c
Vi ×B +

1
nec

J×B︸ ︷︷ ︸
Hall term

. (2)

The final term in (2) is identified as the Hall term. Physically, the Hall term
decouples ion and electron motion on ion inertial length scales: L < c/ωpi where
ωpi = 4πnie

2/mi.
The full set of Hall MHD equations is as follows:

∂ρ

∂t
+∇ · ρV = 0 (3)

∂ρV
∂t

+∇ · [ρVV + (P +B2/8π)I−BB/4π
]

= 0 (4)

∂ε

∂t
+∇ · [V(ε+ P +B2/8π)−B/4π(V ·B)

]
+

∇ · [VH(B2/8π)−B/4π(VH ·B)
]

= 0 (5)

∂B
∂t

= −c∇×E = ∇× [(V + VH)×B] (6)

where ε = ρV 2/2 + P/(γ − 1) + B2/8π, P/ργ = cnst, and VH = −J/ne. The
plasma pressure is obtained from

P = (γ − 1)(ε− ρV 2/2−B2/8π) . (7)

We take γ = 5/3. In writing (3) – (6) the subscript i has been dropped for
simplicity, and the variable VH is defined as a ‘Hall velocity’ to explicitly show
where the Hall term enters the equations. Aside from the magnetic field induc-
tion equation (6), the Hall term only enters the energy equation (5). Thus, the
Hall term is a transport mechanism for the magnetic field but not for mass or
momentum.

We point out that solving the energy equation to calculate the pressure is
problematic in low β plasmas because it involves subtracting two large numbers
(i.e., ε and B2/8π). An alternative to using the energy equation (5) is to use the
adiabatic pressure equation

∂P

∂t
+∇ · PV = −(γ − 1)P∇ ·V . (8)

However, a computational problem arises using (8): the Rankine-Hugoniot jump
conditions across a shock are not correct unless additional modifications are
made (e.g., inclusion of an artificial viscosity); whereas the jump conditions are
automatically satisfied using the total energy equation.



168 Joseph D. Huba

The Hall term introduces two new wave modes into the plasma system:
whistler waves and Hall drift waves. It is important that these wave modes
be identified and understood in developing a Hall simulation code because they
determine the time step through the Courant condition.

The dispersion relations for these wave modes are easily derived in the elec-
tron magnetohydrodynamic (EMHD) limit: V = 0. In this limit the ions are
assumed to be a stationary, neutralizing background. The EMHD magnetic in-
duction equation is

∂B
∂t

= ∇× (VH ×B) = −∇× (J/ne×B) . (9)

We rewrite (9) as follows to identify the origin of each wave mode

∂B
∂t

= − 1
ne
∇× (J×B)︸ ︷︷ ︸

Whistler waves

+
1
n2e

∇n× (J×B)︸ ︷︷ ︸
Hall drift waves

. (10)

The first term on the RHS of (10) is responsible for the whistler wave, while the
second term for the Hall drift wave. It is important to note that Hall drift waves
only occur in inhomogeneous plasmas. We now discuss each wave mode in more
detail.

2.1 Whistler Waves

We assume the following plasma configuration. The plasma is homogeneous and
the ambient magnetic field is in the z−direction: B = B0 êz. The magnetic field
is perturbed with δBx and δBy ∝ exp(ikzz−iωt). The linear dispersion equation
is obtained from

∂δB
∂t

= − 1
ne
∇× (δJ×B) . (11)

We linearize (11) to obtain

ωδB =
1
ne

(kzBδJx êx + kzBδJy êy) . (12)

Making use of Ampere’s law (i.e., δJ = (c/4π)∇ × δB) we obtain the coupled
equations

ωδBx = −i ck
2
zB

4πne
δBy (13)

ωδBy = i
ck2

zB

4πne
δBx . (14)

Finally, solving (13) and (14) the whistler wave dispersion relation is obtained

ω =
k2

zB

4πne
= kzVA

(
kzc

ωpi

)
. (15)

It is evident from the final form of the dispersion relation that the whistler wave
phase velocity exceeds the Alfvén velocity for wavelengths λz < c/ωpi. This
makes it clear that the Hall term is important for scale sizes less than the ion
inertial length as noted in the Introduction.
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2.2 Hall Drift Waves

We assume the following plasma configuration. The plasma density is inhomo-
geneous n(x) and the ambient magnetic field is in the z−direction: B = B0 êz.
The ambient magnetic field is perturbed with δBz ∝ exp(ikyy− iωt). The linear
dispersion equation is obtained from

∂δB
∂t

=
1
n2e

∇n× (δJ×B) . (16)

We linearize (16) and find that

iωδBz =
1
n2e

∂n

∂x
δJxB . (17)

Noting that δJx = iky(c/4π)δBz, the following dispersion relation is obtained
from (17)

ω =
kyB

4πne
1
n

∂n

∂x
= kyVA

(
c

Lnωpi

)
(18)

where Ln = (∂ln n/∂x)−1 is the density gradient scale length. Again, it is clear
that the Hall term is important when Ln < c/ωpi. The Hall drift wave described
by (18) is a magnetic drift wave that propagates in the B × ∇n direction. A
detailed analysis of this wave mode is presented in [11] and [38].

In addition to the propagation of a linear wave mode, it has also been shown
that shock-like solutions exist based on a nonlinear analysis of (9) [39,40]. Re-
cently, Rudakov and Huba [41] found that a rapid, localized thinning of a cur-
rent layer supported by a uni-directional magnetic field leads to the generation
of a nonlinear, shock-like structure. This shock-like wave also propagates in the
B×∇n direction; it is self-supportive and can lead to a nonlocal thinning of the
current layer and the release of magnetic energy.

3 Numerical Methods

We describe in some detail the numerical techniques used in the NRL 3D Hall
MHD code VooDoo to solve (3) – (6). The key points we address are the cell
definition, the finite volume method, the time step scheme, the high order in-
terpolation scheme, the partial donor cell flux limiter, the distribution function
method, the calculation of the electric field, the Courant condition, and sub-
cycling the Hall term for computational efficiency.

3.1 Cell Definition

The code uses a Cartesian, staggered mesh, known as the Yee grid, and is shown
in Fig. 1. The hydrodynamic variables mass density ρ, velocity V, and energy
density ε are defined at the cell center. The magnetic field B is defined normal
to the cell faces, and the electric field E is defined along the cell edges. The
advantage to using this grid is that ∇ ·B = 0 is satisfied to machine error.
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Fig. 1. Mesh used in the NRL 3D Hall code VooDoo.

3.2 Time Step Scheme

The code uses a 2nd order Adams-Bashforth time stepping scheme. The time
advancement scheme to update the variable A from time t to time t+Δt is

At+Δt = At +ΔtF t+Δt/2
A (19)

where F t+Δt/2
A is the total flux of A through the cell faces at the half time step.

The values of the variables at the half time step needed to calculate the flux F are
obtained by a linear extrapolation from the two previous time steps. Specifically,
the half time step values are given by

At+Δt/2 = At +
Δt

2Δt0

(
At −At−Δt0

)
(20)

where the time steps are shown schematically in Fig. 2. The code uses a variable
time step so the full time step increments (Δt0 and Δt) can be different.

Δ 0t− t t/2ΔA

Δ 0t

A t

Δ t/2

A t+

Fig. 2. Schematic of the time step scheme to obtain variables at the half time step.

3.3 Finite Volume Method

The finite volume method updates the conserved variables mass, momentum,
and energy by calculating the fluxes of these variables across the cell faces. This
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is more clearly understood by considering an example. The continuity equation
is given by

∂ρ

∂t
= −∇ · ρV . (21)

This equation is integrated over a cell volume∫
∂ρ

∂t
d3x = −

∫
∇ · ρV d3x (22)

which can be written as

∂ρT

∂t
= −

∮
(ρV) · n̂ d2x (23)

where ρT =
∫
ρ d3x is the mass in the cell, n̂ is the normal to the cell face, and

we have used Gauss’ law. The total mass is then advanced in time from t to
t+Δt by

ρt+Δt
T = ρt

T −Δt
∮

(ρV)t+Δt/2︸ ︷︷ ︸
flux F

· n̂ d2x (24)

where we have explicitly identified the mass flux term. The density at the up-
dated time step is then ρt+Δt = ρt+Δt

T /
∫
d3x. This same technique is also used

to update the momentum and energy. Thus, the code must calculate the mass,
momentum, and energy fluxes at each cell face. The general updating scheme
for A is

At+Δt = At −
∫

Ft+Δt/2
A · n d2x (25)

where FA is the flux of A.

3.4 Flux Calculation

The code VooDoo uses a distribution function scheme to calculate the fluxes of
mass, momentum, and energy at cell faces. The details of this method are de-
scribed in [42] and will not be repeated here. Rather, we will present an overview
of the method, and descriptions of the high order interpolation scheme and the
partial donor cell flux limiter.

The calculation of the flux at a cell face is as follows; we use the one dimen-
sional continuity equation as an example. The mass flux is defined as

F = ρV = ρ
∫
dv v f(v) (26)

where f(v) is a distribution function that describes the plasma system (this will
be discussed shortly). We need to calculate this quantity at a cell face i + 1/2.
The total flux F is decomposed into two parts, a left flux FL and a right flux
FR, as follows

Fi+1/2 = (ρV )i+1/2 = (ρV )L
i+1/2 + (ρV )R

i+1/2 (27)
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Fig. 3. Flux components FL and FR at a cell face i + 1/2.

where FL = (ρV )L
i+1/2 and FR = (ρV )R

i+1/2 in Fig. 3. The interpretation of the
left and right state fluxes is as follows. The left state flux FL is the contribution
to the total flux from mass moving from cell i into cell i+ 1; the right state flux
FR is the contribution from mass moving from cell i + 1 into cell i. Using the
distribution function method, these fluxes are defined as

FL = ρL

∫ ∞

0
dv v fL(v) (28)

and

FR = ρR

∫ 0

−∞
dv v fL(v) (29)

so that the total flux at a cell interface is

F = FR + FL . (30)

In (28), only particles moving in the positive direction contribute to the flux
FL; hence, the integration limits are from 0 to ∞. Conversely, in (29), only
particles moving in the negative direction contribute to the flux FR and therefore
the integration limits are from −∞ to 0. Note that the fluxes are defined with
variables in the left state L and the right state R. The left and right state values
are determined using a high order interpolation scheme and the partial donor
cell method. The high order interpolation scheme defines the values at the cell
face, and the partial donor cell method is then used to define the left and right
states. We now elaborate on these points.

High Order Interpolation Scheme. To calculate the fluxes at the cell faces,
we need the values of the primitive variables density, velocity, and temperature
(obtained from the pressure), as well as the magnetic field. The values of these
variables are found by using a high order interpolation scheme. However, the
high order interpolation is performed on the conserved variables mass, momen-
tum, energy, and magnetic flux, and then converted to the appropriate primitive
variables.

The scheme is described as follows [43]. We calculate the conserved variable
gc =

∫
gp d

3x where the subscripts c and p refer to conserved and primitive (e.g.,
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Fig. 4. One dimensional grid for the high order interpolation scheme.

total mass and density). We need to calculate the high order value Gc at the cell
face. A one dimensional representation of this is shown in Fig. 4. We now define
the function G(x) as

Gc(x) =
∫ x

−∞
Gc(s) ds . (31)

From (31) it follows that the high order value is

Gc(x) =
∂Gc

∂x
. (32)

We apply (32) to find Gc to second order at the interface i+ 1/2 and find that

G
i+1/2
c(2) =

(
∂Gc

∂x

)
i+1/2

=
Gi+3/2

c − Gi−1/2
c

2Δx
. (33)

Now, we note that the meaning of the last term in (33) is

Gi+3/2
c − Gi−1/2

c

2Δx
=

1
2Δx

[integral of cells i and i+ 1]

=
1

2Δx
(gi+1

c + gi
c)Δx (34)

so that
G

i+1/2
c(2) =

1
2
(gi+1

c + gi
c) . (35)

This technique can be applied to obtain higher order interpolated values of Gc.
For example, to fourth order

G
i+1/2
c(4) =

1
12Δx

(Gi−2
c − 8Gi−1

c + 8Gi+1
c − Gi+2

c

)
(36)

and it can be shown that

G
i+1/2
c(4) =

7
12

(gi+1
c + gi

c)−
1
12

(gi+2
c + gi−1

c ) . (37)

Finally, to obtain the high order primitive variable at the cell interface we
also need to interpolate the cell volumes. For example, the primitive variable
gp(4) is given by

g
i+1/2
p(4) =

G
i+1/2
c(4)

Vi+1/2
c(4)

(38)

where Vc(4) is the fourth order interpolated cell volume at i+ 1/2.
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Partial Donor Cell Method. A problem that arises in using high order in-
terpolation schemes is that spurious overshoots and undershoots occur at sharp
discontinuities (e.g., shock waves). To avoid this problem, flux limiters are used.
The basic idea is that the code monitors sharp discontinuities; if a sharp discon-
tinuity is found, then a low order interpolation scheme is used. In essence, a more
diffusive scheme is used in regions of strong gradients. There are a number of
flux limiting schemes available (e.g., flux corrected transport, partial donor cell
method). The NRL code VooDoo uses the partial donor cell method developed
in [44] which we now describe.

Consider a density structure being advected at a constant velocity V in one
dimension as shown in Fig. 5. Under constant advection, the maximum density
allowed is n = ni−1

p . Since the velocity V is positive, the density structure is
moving left to right and we will be determining the left state L of the density at
the cell interface i+1/2. We retain the subscript p on the density n to emphasize
that the flux limiter operates on the primitive variable not the conserved variable.
In Fig. 5, ni

p is the density in cell i, ni−1
p is the density in cell i− 1, ni+1/2

pHO is the
high order interpolated density at cell interface i+ 1/2, and ni+1/2

P DM is the partial
donor cell value of the density which will now be determined.
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n n n n
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n

HO

L

1

3/2

2

PDM

Fig. 5. Schematic of using the partial donor cell to determine the left state L of the
density n.

The density is advanced one time stepΔt so that the plasma moves a distance
V Δt. The amount of plasma entering cell i from cell i − 1 is ni−1

p V Δt; the
amount of plasma leaving cell i and going into cell i+ 1 is ni+1/2

P DMV Δt where we
are assuming the density in the left state L is the partial donor cell value. These
are represented by the lightly shaded areas in Fig. 6. Thus, the total increase
in plasma in cell i after one time step is (ni−1

p − ni+1/2
P DMV Δt). However, the

maximum plasma increase allowed in cell i is (ni−1
p −ni

p)Δx which is denoted by
the darker area in Fig. 6. If more plasma enters cell i there may be an overshoot
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in the density which is unphysical. The partial donor cell value is defined by
balancing these two quantities, i.e.,

(ni−1
p − ni+1/2

PDM )V Δt = (ni−1
p − ni

p)Δx . (39)

From (39) we find that

n
i+1/2
PDM =

1
α

[
ni

p − (α− 1)ni−1
p

]
(40)

where α = V Δt/Δx is referred to as the PDM parameter and is in the range
0 < α ≤ 1. Thus, ni+1/2

P DM is the minimum value of the left state density allowed.
If the left state density is less than this value, then there is the possibility of a
spurious density overshoot in cell i. Note that if α = 1 then ni+1/2

P DM = ni
p; this is

the full donor cell method and it is very diffusive numerically. By choosing α < 1
it becomes the partial donor cell method and numerical diffusion is reduced.

V

n
p
i

tΔV tΔV x

n
p
i −1

in
PDM

+1/2

i i−1 +1i

Fig. 6. Schematic showing how the partial donor cell value nP DM is obtained.

Referring to Fig. 5, we see that there are three values of the density to choose
from for the left state (L) density: ni

p, n
i+1/2
P DM , and ni+1/2

pHO . The middle value is
chosen for the left state. The rationale is as follows. In general, one would want
to use the high order interpolated value because it provides the best estimate of
the left state. If ni+1/2

P DM < ni+1/2
pHO < ni

p then this would be the right choice. One
would not expect a spurious overshoot in cell i because more plasma is being
removed than the minimum defined by the partial donor cell value. However,
for the situation shown in Fig. 5, one would choose the partial donor cell value
for the left state density because ni+1/2

pHO < ni+1/2
P DM . Hence, the flux is ‘limited’ to

prevent spurious overshoots.
To determine the right state R value of the density at cell interface i one

reverses the sign of the velocity V and follows the procedure outlined above.
The partial donor cell value for the right state of the density is

n
i+1/2
PDM =

1
α

[
ni

p − (α− 1)ni+1
p

]
. (41)
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3.5 Distribution Function Method

The code VooDoo uses a distribution function method to calculate the fluxes of
mass, momentum, and energy at cell interfaces. The question naturally arises,
what is f(v)? This method is described in detail in [42].

We define the following transport equation

∂ρ 〈χ〉
∂t

+∇ · ρ 〈χv〉 − ρ
〈
a · ∂χ
∂v

〉
= 0 (42)

where
〈F〉 =

∫
dv f(v)F

a =
∇M
8πρ

; M = B2
x ex +B2

y ey +B2
z ez .

The continuity equation is obtained from (42) by setting χ = m, the momentum
equation by setting χ = mv, and the energy equation by setting χ = mv2/2. The
question to be answered is the following. Can we find a distribution f(v) such
that, when substituted into the transport equation (42), the 3D MHD equations
(3) - (5) are recovered?

The following distribution function satisfies this requirement.

f = f1 + f2 (43)

where

f1 =
exp(−u2

1)

(πv21x)1/2

exp(−v21)(
πv21y

)1/2

exp(−w2
1)

(πv21z)
1/2 (44)

f2 = − (u2v2 + u2w2 + v2w2)
exp(−u2

2)

(πv22x)1/2

exp(−v22)(
πv22y

)1/2

exp(−w2
2)

(πv22z)
1/2 (45)

and uα = (vx − Vx) /vαx, vα = (vy − Vy) /vαy, wα = (vz − Vz) /vαz, v
2
1x =

2C2
s/γ + V 2

Ay + V 2
Az, v

2
1y = 2C2

s/γ + V 2
Ax + V 2

Az, v
2
1z = 2C2

s/γ + V 2
Ax + V 2

Ay,

v22x = 4V 2
Ax, v

2
2y = 4V 2

Ay, v
2
2z = 4V 2

Az, and C2
s = γP/ρ. In (43), f1 defines the

diagonal terms in the MHD equations and f2 defines the off-diagonal terms.
The point of this method is that the distribution function f(v) contains

the hydrodynamic force (pressure) and all of the electromagnetic forces except
those associated with a. Thus, by using f(v) to calculate mass, momentum, and
energy fluxes, most of the electromagnetic contribution is calculated directly, i.e.,
one does not have to solve the hydrodynamic and magnetic force components
separately or differently.
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3.6 Magnetic Field Evolution

The evolution of the magnetic field is governed by

∂B
∂t

= −c∇×E = −c∇× [Ec + EH ] (46)

where we define Ec = −V × B/c and EH = −VH × B/c with VH = −J/ne.
The electric field Ec is the convective electric field and EH is the Hall electric
field. The general technique to solve (46) is as follows. The normal component
of the field is integrated over a cell face∫

dA·∂B
∂t

= −c
∫
dA· ∇ ×E = −c

∫
E · dl (47)

where
∫
dl denotes a line integral around the cell face (see Fig. 1). The advantage

of using this technique to calculate the magnetic field is that is satisfies ∇·B = 0
to machine accuracy.

As a specific example, the magnetic flux in the x direction at a cell interface
is evolved using

∂Φx

∂t
= −cEy dy − cEz dz (48)

where Φx = Bx dydz. The updated magnetic flux in the x direction is

Φt+Δt
x = Φt

x + cΔt (Ey dy + Ez dz)
t+Δt/2

. (49)

The convective and Hall electric fields are structurally very different and require
different numerical techniques. We describe each field calculation separately.

Convective Electric Field. The convective electric field in VooDoo is calcu-
lated using the distribution function method. This is most easily seen by con-
sidering a single component of the convective electric field

Ecz = −1
c
(VxBy − VyBx) (50)

which is written as

Ecz = −1
c

(∫
f(v)vxBy d

3v −
∫
f(v)vyBx d

3v

)
. (51)

Thus, the calculation of Ec is based on the fact that V =
∫
f(v)v d3v. We

note that the actual implementation of this technique is fairly complicated; it is
described in [42].
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Fig. 7. Schematic of the upwinding scheme used to calculate one component of the
Hall electric field.

Hall Electric Field. The Hall electric field is

EH = −1
c
VH ×B =

1
nec

J×B . (52)

Since the Hall electric field is solely a function of the magnetic field, the dis-
tribution function method cannot be used to solve for it. We use an upwinding
scheme to solve for the Hall electric field. We will explain this method by using
a simple example.

We consider a single component of the Hall electric field

EHz = −1
c
(VHxBy − VHyBx) (53)

which we break up into two parts

Exy
Hz = −VHxBy and Eyx

Hz = VHyBx . (54)

By analogy with the convective electric field, we interpret By being convected at
the Hall velocity VHx and Bx being convected at the Hall velocity VHy in (54).

We now focus on the component Exy
Hz which is shown in Fig. 7. In this figure

Exy
Hz and VHx are defined along a cell edge (as shown in Fig. 1) and VHx > 0.

Also shown are the face-centered magnetic field By and the left (ByL) and right
(ByR) states of By. The left and right states of By are determined using the high
order interpolation scheme and partial donor cell method previously described.
The upwinding scheme to determine Exy

Hz is

Exy
Hz =

{
VHxByL for VHx > 0
VHxByR for VHx < 0 (55)

The interpretation of (55) is straightforward. If VHx > 0, as shown in Fig. 7,
then the Hall term is convecting the magnetic field from left to right and the
left state magnetic field is used, i.e., the upwinded state. Conversely, if VHx < 0,
then the right state magnetic field is used.
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3.7 Courant Condition

The time step in an explicit code is controlled by a Courant condition

Δt <
Δx

Vmax
(56)

where Vmax is the maximum fluid or wave velocity in the system. Usually the
Courant condition is set by wave speeds. The following velocities need to be
considered in a Hall MHD code:

• Fluid flow: V
• Magnetosonic wave: Vm =

√
V 2

A + C2
s

• Hall velocity: VH = −J/ne
• Hall drift wave: Vhdw = V 2

A/LnΩi

• Whistler wave: Vw = kV 2
A/Ωi

where VA = B/(4πnimi)1/2 is the Alfvén velocity, Cs = (2T/mi)1/2 is the sound
speed, Ln = (∂ln n/∂x)−1 is the density gradient scale length, Ωi = eB/mic is
the ion cyclotron frequency, and k is the wavenumber. We set k = 2π/Δx to
evaluate Vw numerically. Thus, we use the following velocity in the Courant
condition

Vmax = max(V + Vm + VH + Vhdw + Vw) . (57)

In general, the Hall drift and whistler wave phase velocities determine the
time step. For phenomena in which only the plasma dynamics in the plane
transverse to the magnetic field is important, the Hall drift wave controls the
time step; examples are plasma opening switches and sub-Alfvénic plasma ex-
pansions. On other hand, for phenomena that require plasma dynamics along
the magnetic field, the whistler wave phase velocity controls the time step; a
prominent example is magnetic field line reconnection.

The whistler wave is particularly troublesome in modeling Hall MHD pro-
cesses for two reasons. First, Vw >> VA so that the time step is significantly
smaller than that used in ideal MHD simulations. Second, and most important,
the whistler phase velocity is proportional to k (or 1/Δx numerically) so that
the shortest waves in the system have the highest phase velocity. This can gen-
erate spurious, short wavelength noise in Hall MHD simulations. This noise can
be suppressed by adding an artificial hyper-resistivity to the magnetic induction
equation or by numerically smoothing the Hall electric field. The latter is done
in VooDoo using a 3-point smoothing algorithm [45]. In addition, there is also a
severe penalty in the time step when the resolution is increased. The time step
is proportional to (Δx)2 so that time step decreases by an additional factor of 2
when the resolution is doubled.

3.8 Sub-cycling the Hall Physics

Hall MHD simulations can be very computationally intensive because of the
small time step required. One technique to overcome the small time step problem
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is to solve the magnetic field equation for the Hall term implicitly. Although this
will allow for larger time steps and probably eliminate spurious, short-wavelength
noise, it can suppress important physical processes. An alternative technique,
used in VooDoo, is to sub-cycle the Hall term.

t /2t+ Δ t+ Δt

*B

ΔtI

ΔtH

t

Fig. 8. Schematic showing the sub-cycling of the Hall term.

One subcycling time advance scheme is shown in Fig. 8. The ideal time step
ΔtI is defined by the Courant condition using Vmax = max(V + Vm) while the
Hall time step ΔtH is defined using (57). The basic idea is that the plasma does
not move on the Hall time scale (i.e., V = 0) so we do not need to solve the
full set of equations (3) - (6) on the Hall time scale. We only solve (52) on the
Hall time scale. We advance the magnetic field using (52) on the Hall time step
scale ΔtH from t to t + Δt and obtain a provisional value of B∗. We use B∗

at the half-time step and do a full ideal MHD advance from t to t + Δt. The
ideal MHD equations (3) - (5) are solved along with the convective magnetic
induction equation

∂B
∂t

= −c∇×Ec = ∇×V ×B . (58)

This method is used in VooDoo and it substantially reduces the computational
time required for a 3D Hall MHD simulation (by about an order of magnitude).

4 Applications

We now present several applications of Hall MHD to space and laboratory plas-
mas. We first look at the propagation of whistler and Hall drift waves, and then
examine plasma opening switches and magnetic reconnection.

4.1 Linear Hall Waves

In developing a Hall MHD code it is important that the two fundamental linear
wave modes are properly described. We present numerical results of the disper-
sion relation of whistler and Hall drift waves using VooDoo.

Whistler Waves. The linear wave relation for whistler waves is given by (15).
We compare the numerical results of a simulation with this dispersion relation.
The simulation parameters are the following. The ambient magnetic field is in the
z-direction B = B0 êz with B0 = 1000 G, the density n is homogeneous with n0
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= 1012 cm−3, β = 10−4, the plasma is assumed to be isothermal (i.e., T = cnst),
the system size is Lz = 20 cm, and we use 120 mesh points in the z-direction. The
system is perturbed with δBx = δB sin(2πmz/Lz) and δBy = δB cos(2πmz/Lz)
where m is the mode number and we take δB = 10 G. In Fig. 9 we plot the wave
frequency as a function of mode number for the analytical and numerical results.
The quadratic nature of the wave mode is evident. At low mode number the the
two results agree extremely well. However, at high mode number the numerical
frequency becomes increasingly smaller than the analytical frequency because of
grid dispersion, i.e., the wavelength of the mode approaches the grid scale.

Fig. 9. Analytical and numerical comparison of the whistler wave frequency.

Hall Drift Waves. A simple linear wave relation for Hall drift waves is given by
(18) that is valid in the limit Ln << c/ωpi. However, the more general dispersion
equation is given by [38]

ω2 − k2
yV

2
A − ωkyV

2
A/ΩciLn = 0 (59)

for β << 1. The solution to this equation is

ω =
kyV

2
A

2LnΩci
± 1

2

[
k2

yV
4
A

L2
nΩ

2
ci

+ 4k2
yV

2
A

]1/2

(60)

which illustrates the coupling between the Alfvén wave and the Hall drift wave.
In the limit Ln >> VA/Ωci (or Ln >> c/ωpi), (60) reduces to ω = kyVA; in
the opposite limit it reduces to (18). We now present simulation results for this
wave mode.

The simulation is set up as follows. We consider a 2D grid in the x − y
plane; the length scales of the system are Lx = 30 cm and Ly = 20 cm and the
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mesh size is (x, y) = (100,120). The ambient magnetic field is in the z-direction
(B = B0 êz) with B0 = 1000 G, the density is inhomogeneous with a profile

n(x) =
n0

2
[(1 +A) + (1−A)tanh((x− x0)/Δx)] (61)

where A is referred to as the Atwood number, β = 10−4, and the plasma is
assumed to be isothermal (i.e., T = cnst). The magnetic field is perturbed with
δBz = δB cos(2πmy/Ly) where m is the mode number and we take δB = 10
G. We also use A = 20, x0 = 10 cm, and Δx = 3 cm. Finally, we maintain the
density profile (61) throughout the simulation to maintain the propagation of
the Hall drift wave. For this plasma configuration the Hall drift wave propagates
in the −y-direction.

In the left panel of Fig. 10 we plot the normalized phase velocity of the Hall
drift wave and the normalized density as a function of x. The Hall drift wave
dominates the Alfvén wave in the region of the density gradient. The maximum
phase velocity of the Hall drift wave occurs at x � 15 cm. In the right panel
of Fig. 11 we show a contour plot of the perturbed magnetic field B(x, y)− B0
at time t = 10−8 s. Note that the contours are distorted in the −y-direction in
the region of the density gradient, and that the maximum distortion occurs at
x � 15 cm. This is consistent with the linear theory of the Hall drift wave.

In Fig. 11 we plot the maximum wave frequency of the Hall drift wave (which
is at x � = 15 cm) as a function of mode number. The comparison between the
analytical result and the numerical results is good. Note that the wave dispersion
is linear and not quadratic like the whistler wave.

Fig. 10. Plot of the normalized phase velocity and density (left panel) and contour
plot of the perturbed magnetic field (right panel) for the Hall drift wave.
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Fig. 11. Analytical and numerical comparison of the Hall drift wave frequency at
x = 15 cm.

4.2 Plasma Opening Switch

The plasma opening switch is a laboratory device designed to provide the appro-
priate power conditioning for inductive, pulsed, high-power generators [8,9,10,13,14,17].
A schematic of an opening switch is shown in Fig. 12. The basic concept of the
switch is that a capacitive discharge sets up a current system through the plasma
in the switch. The electrostatic energy stored in the capacitor is converted to
magnetic inductive energy. The discharge current propagates down the plasma
channel. When it reaches the end of the plasma the switch ‘opens’ and it rapidly
transfers the stored magnetic energy to the load. The energy released is in the
range 10 – 1000 KJ over a time scale 10’s ns to a few μs so that the power pro-
duced is 1012 – 1014 W. Depending on the plasma parameters, Hall physics can
control the dynamics of current propagation down the channel. The key plasma
parameter that controls the dynamics is the plasma density in the switch. At
high densities n > 1016 cm−3 the plasma is controlled by ideal MHD (i.e., Alfvén
time scales), while at low densities n < 1013 cm−3 the plasma is dominated by
Hall physics. At intermediate densities, both ideal MHD and Hall physics are
important.

We present results for two plasma opening switch simulations. The simulation
is set up as follows. We consider a 2D grid in the x−y plane; the length scales of
the system are Lx = 8 cm and Ly = 8 cm and the mesh size is (x, y) = (40,50);
the mesh is nonuniform in the y-direction. The density profile is

n(y) =
n0

Z
[(1 + αtanh(y/Δy)] (62)

where Z is the charge state. We choose α = 9 and Δy = 0.5 for y < 0, and α = 3
and Δy = 1.0 for y > 0. A time-dependent magnetic field in the z-direction
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Fig. 12. Schematic of a plasma opening switch.

(B = B0tanh(t/τr) êz) is imposed at the x = 0 boundary with B0 = 1.2× 104 G
and τ = 10−6 s; this models the current rise time associated with the capacitive
discharge. Finally, the plasma is assumed to be isothermal (i.e., T = cnst) and
consists of doubly charged carbon ions (Z = 2 and mi = 12mp). We also assume
β = 10−4,

The results are shown in Fig. 13. In the left panel we plot the normalized
phase velocity Vph of the Hall drift wave (solid line) and normalized density n
(dashed line) for n0 = 1012 cm−3. The magnitude of Vph is a function of space
and time because of the time dependent magnetic field. The interesting feature
of this system is that Vph > 0 for y < 0 and Vph < 0 for y > 0 because the Hall
drift propagates in the B×∇n direction. Hence, in the Hall regime, the magnetic
field will penetrate the plasma for y < 0 and be inhibited for y > 0. In the middle
panel we show a contour plot of the magnetic field for n0 = 1012 cm−3 at time t
= 20 ns. The magnetic field has penetrated the system extremely rapidly in the
region where the Hall drift hall velocity is positive. In contrast, the time scale for
penetration for ideal MHD is roughly two orders of magnitude longer (� 2μs).
For B0 � 200 G we find that VA � 6 × 107 cm/s and Vph � 8 × 109 cm/s. In
the right panel we show results for n0 = 1014 cm−3. The Hall penetration time
of the magnetic field is an order of magnitude longer the previous case because
of the increased density. Also, the field penetration ‘tongue’ is broader than the
previous case. This is attributed to ideal MHD effects, i.e., the magnetic field is
able to ‘push’ it’s way into the plasma.

4.3 Magnetic Reconnection

In recent years it has become evident that Hall physics plays a critical role
in magnetic reconnection processes [18,19,20,21,22,23,24,25,26,27,28,29,30,31].
This is especially true at the magnetopause and in the magnetotail where re-
connection processes can dominate the dynamics of the system. The Hall term
decouples the ion and electron motion on scale lengths less than an ion iner-
tial length c/ωpi. Drake and co-workers [20,21,23,28] made the observation that
the ion outflow channel in the reconnection process is therefore determined by
c/ωpi rather than the electron scale length c/ωpe. This is significant because it
allows reconnection to proceed at a rapid rate. We note that nominal values of
the ion inertial length at the earth’s magnetopause and in the magnetotail are
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Fig. 13. Simulation of a plasma opening switch.

c/ωpi ∼ 10’s – 100’s km. This is much smaller than grid sizes used in global MHD
models of the earth’s magnetosphere and highlights a computational difficulty
in incorporating Hall physics into a global model of the magnetosphere.

We present a comparison of 2D Hall and ideal MHD simulations using the
parameters defined for the GEM Reconnection Challenge problem [24]. The
magnetic field is in the x-y plane. Periodic boundary conditions are used in
the x-direction and zero-gradient (∂/∂y = 0) boundary conditions in the y-
direction. The equilibrium magnetic field is given by Bx(y) = B0tanh(y/w) with
w = 0.5c/ωpi and c/ωpi is the ion inertial length defined using n = n0. The
density floor nb is 1/5 of the maximum density n0. The temperature T is cho-
sen to provide pressure balance; the parameters n0 and B0 are adjusted so that
β0 = 8πn0T/B

2
0 = 1. The simulations are initialized with a large magnetic island

with a flux perturbation of the form ψ = −ψ0cos(2πx/Lx)cos(πy/Ly) where Lx

and Ly are the dimensions of the simulation box. The size of the simulation box
is Lx = 25.6c/ωpi and Ly = 12.3c/ωpi, and we take ψ0 = 0.1. The time scale is
normalized to τA = (c/ωpi)/VA0 based on n = n0 and B = B0. The mesh size
of the simulations are 100 × 50 and uses a stretched mesh in the y-direction.
There are roughly 25 grid points within the current layer.

A significant difference between Hall and ideal MHD reconnection dynamics
is the development of an ‘out-of-plane’ magnetic field Bz. This component of the
wave field is associated with the generation of a whistler wave. This is shown in
Fig. 14 at time t � 21τA; this field does not develop in ideal MHD reconnection.
The origin of this field and its structure follows from (52). The z-component of
this equation is nonzero and is given by

∂Bz

∂t
= − ∂

∂x

JzBx

ne
− ∂

∂y

JzBy

ne
(63)
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layer becomes unstable to secondary reconnection processes, while the Hall MHD
current layer remains stable.

Perhaps most important, the Hall MHD magnetic reconnection rate is sub-
stantially faster the ideal MHD reconnection rate. In Fig. 16 we plot the re-
connected flux (Φ =

∫
By dx where the line integration is between the X point

and the O point) as a function of time for the Hall and ideal MHD cases. The
Hall MHD case reconnects substantially faster than the ideal MHD case. This is
consistent with other simulation studies (e.g., see [24]).

Fig. 16. Reconnected magnetic flux as a function of time.

A number of researchers are attacking the reconnection problem in 3D using
particle [32,33], hybrid [34], and fluid codes [35]. We now present some results
of a 3D simulation study of Hall reconnection physics using VooDoo [36].

The simulation conditions for the main study are as follows. Periodic bound-
ary conditions are used in the x direction and zero-gradient boundary conditions
in the y and z directions (∂/∂y = 0 and ∂/∂z = 0). The spatial scales are normal-
ized to the the ion inertial length (c/ωpi0), the time scale to the ion gyrofrequency
(Ωi0), and the velocity to the Alfvén velocity (VA0) using n = n0 and B = B0.
The equilibrium magnetic field is given by Bx(y) = B0tanh(y/yL) with yL = 0.5.
The temperature is defined to be Cs = VA0 where Cs = (2T/mi)1/2. The density
profile is determined by balancing the plasma and magnetic field pressures. The
maximum density is n = n0 at y = 0 and is n = 0.2n0 for |y| > yL. The size
of the simulation box is Lx = 26, Ly = 12.5, and Lz = 104. The simulations
are initialized with a magnetic perturbation δBx = (δB/2)(Lx/Ly)F (x, y) and
δBy = δBF (x, y) localized in the z direction −26.8 < z < −20.4 so that the
width of perturbation is Δ � 6. We take F (x, y) = sin(2πx/Lx)cos(πy/Ly) and
δB = 0.1B0. The mesh size is 50 × 50 × 50. A nonuniform stretched mesh is
used in the y-direction so that there are roughly 25 grid points within the current
layer. The simulations are run to time τ = 28.6.

The results of this simulation are shown in Figs. 17 – 19. In Fig. 17 we show
contours of the plasma density and velocity vectors as a function of space (yz
plane at x = 0) at times t = 1.6, 16.4, 32.7, and 49.1. Here, the velocity vectors
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z

Fig. 17. Contour plots of the plasma density and velocity vectors at times t = 1.6,
16.4, 32.7, 49.1.

are ‘wind flags’ where the small diamond is at the base of the vector. Three
observations are made. First, although the initial perturbation width is Δ � 6,
the reconnection layer extends a distance of Δ � 70 at t = 49.1. Second, the
reconnection site propagates asymmetrically; it only propagates in the +z direc-
tion from it’s initial position at z ∼ −22. The disturbance does not propagate
into the region z < −30. And third, as the reconnection wave propagates in
the +z direction, plasma flows are not only directed toward the neutral line but
also in the direction of the current (i.e., the −z direction) at the front of the
wave; this is evident at time t = 32.7. However, after the reconnection wave has
passed through the system, the resulting flow pattern away from the neutral line
is similar to the 2D case, i.e., plasma flows are only directed toward the neutral
line. at x = 0. This is shown at time t = 49.1 in the region −20 < z < 30.

In Fig. 18 we show magnetic streamlines at z = 0 and τ = 28.6. The magnetic
field lines that have just reconnected are bent (or stretched) in the +z direction.
After the field lines reconnect, magnetic tension ‘pulls’ them toward the O point,
but because there is also a component of the tension in the −z direction, the
reconnected field lines overshoot the position z = 0 and become bent in the −z
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Fig. 18. Streamlines of the magnetic field at time τ = 28.6 and position z = 0.

Fig. 19. Streamlines of the flow velocity at time τ = 28.6 and position z = 0.

direction near the O point. This is consistent with the 2D simulation results
shown in Fig. 14.

Figure 19 shows the consequences of this reconnection process on the plasma
flow. In Fig. 19 we show the plasma flow streamlines of plasma that originated
at z = 0 and y = 0 and ± 5 at several points along the x axis. The plasma
initially flows toward the midplane, i.e., in the ±y direction, as shown in Fig. 17.
Plasma that originated close to the X point (i.e., x � 0) is accelerated primarily
in the −z direction. This is shown by the streamlines in the center of the plasma
sheet that extend to z < −20. However, as one moves away from the X point,
the plasma flow ‘fans out’ and there is flow in both the ±x direction and the −z
direction. The reconnecting field lines appear to ‘whip’ the plasma towards the
O points as they release their tension.

The dynamics of the magnetic field in the reconnection process (i.e., asym-
metric propagation of the reconnection layer and field line bending) is explained
as follows. For simplicity we rewrite Faraday’s law [Eq. (6)] in the electron mag-
netohydrodynamic limit (V = 0) as

∂B
∂t

= ∇×
[ c

4πne
(∇B2/2− (B · ∇)B

)]
. (64)

When the magnetic field is uni-directional, i.e., no magnetic curvature, only
the first term in Eq. (64) contributes to wave propagation in the Hall limit.
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In this limit a density gradient is required to support the Hall drift wave; the
consequences of this wave mode on the evolution of a plasma current sheet was
discussed in Rudakov and Huba [41]. However, in a reconnection geometry near
the neutral sheet, magnetic field line curvature dominates and the second term
in Eq. (64) controls the evolution of the magnetic field in the Hall limit. The
evolution of By is approximately described by

∂By

∂t
� − ∂

∂z

cBy

4πne
∂Bx

∂y
� Jz

ne

∂By

∂z
. (65)

We can rewrite Eq. (65) as ∂By/∂ζ = 0 where ζ = z − VBt and VB

= (c/4πne)∂Bx/∂y = −Jz/ne. Thus, the y component of the magnetic field
propagates in the direction opposite to the current at a velocity ∼ VB ; this
‘reconnection wave’ is responsible for the asymmetric propagation of the recon-
nection layer (and is also responsible for the rapid penetration of magnetic flux
in cylindrical plasma opening switches [9]). Using (65) we estimate VB � 1.6VA0
where VA0 = B0/(4πn0mi)1/2 for plasma conditions near the X point in the
simulation study. This is in reasonable agreement with the wave velocity ob-
tained from the simulation VB � 2.0VA0. The wave speed based on Eq. (65)
underestimates the wave speed because ion motion is neglected.

5 Summary

We have presented a brief tutorial on Hall magnetohydrodynamic (Hall MHD)
physics. The emphasis has been on a basic description of the new wave modes
introduced by the Hall term (the whistler wave and the Hall drift wave), and on
numerical methods to introduce the Hall term into an MHD code. In addition,
an overview of the fundamental methods used in the NRL 3D Hall MHD code
VooDoo is presented. Two applications of Hall MHD physics are presented. The
plasma opening switch which illustrates rapid magnetic field transport associated
with Hall drift wave, and magnetic field line reconnection which demonstrates
that the Hall term can dramatically enhance the reconnection rate and can lead
to the propagation of a ‘reconnection wave’ in a three-dimensional system.
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Fluid Plasma Simulation of Coupled Systems:
Ionosphere and Magnetosphere

Antonius Otto1 and Hua Zhu1

Geophysical Inst., Univ. Alaska Fairbanks, AK 99775, USA

Abstract. The coupling between the magnetosphere and the ionosphere is of major
importance for the magnetospheric dynamics. The interaction of a highly collisionless
plasma with a strongly collision dominated plasma requires an extension of the usual
fluid plasma equations, to include the transport which dominates the ionospheric dy-
namics. Presented is a new simulation model which includes the ionospheric transport
as source terms in the set of fluid plasma equations. Various aspects of the ionospheric
influence are illustrated with the two-dimensional simulation of the formation and evo-
lution of a field-aligned current layer in the ionosphere.

1 Introduction

The coupling between the magnetosphere and the ionosphere is of fundamental
importance for all geomagnetic processes [10,9]. The magnetosphere is bound by
the shocked solar wind and by the ionosphere on the Earthward side. There is a
considerable Poynting flux of electromagnetic energy into the ionosphere partic-
ularly during times of geomagnetic activity. At the same time, the absorption of
energy and momentum and the outflow of cold and heavy ions exert a consid-
erable drag on magnetospheric dynamics by the ionosphere. It should be noted
that in cases of particle precipitation a major portion of the plasma content of
a magnetic flux tube is in the ionosphere.

In most global MHD models [see the corresponding articles in this volume]
the ionosphere is treated as a partially conducting boundary with a height in-
tegrated conductance. Global thermospheric convection models [16,18] typically
use a quasi-static approach where the ion inertia in the momentum equation is
neglected. This, however, is valid only on time scales where the ion motion has
relaxed into a local steady state and the approach eliminates the propagation
of typical plasma waves such as Alfvén waves in the ionosphere. While these
global approaches are perfectly reasonable on the large scales considered in the
global models they are not valid for small spatial scales (km and sub-km scales)
and fast temporal scales where the large scale models lack important physics.
Figure 1 illustrates the many scales of auroral structure from hundreds of km’s
down to about 100 m width of discrete arcs with a separation of 5 to 10 km
(bottom).

Small-scale filamentary structure is very frequent in the auroral ionosphere
[2,5]. This is a strong indication for time-dependent processes which require ion
inertia [13,12]. There is also strong evidence that small scale structure has a
considerable influence on the global magnetospheric and ionospheric properties
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c© Springer-Verlag Berlin Heidelberg 2003
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50 km

600km

Fig. 1. Illustration of auroral arc scales in an all sky image (top, courtesy of Poker flat
research range) and a higher resolution image(bottom)

such as the absorption of magnetospheric energy into neutral heating and the
outflow of heavy ionospheric material which can exert a large drag on the mag-
netospheric dynamics. For instance, small scale ionospheric convection velocities
(and the corresponding electric field) in the auroral region are often orders of
magnitude larger than the large scale average fields. However, the energy ab-
sorbed by Joule heating is σpE⊥2 with the Pedersen conductance σp and the
convection electric field E⊥. Since large amplitude small scale fields are elim-
inated in the large scale averages, the large scale averaged fields will always
underestimate the true Joule heating.

Following we will first introduce the basic equations, the numerical algorithm
used to solve these equations, and discuss the basic physics associated with the
ionospheric transport. Section 3 presents several simulation results to illustrate
the capabilities of the model and Sect. 4 provides a discussion and summary.

2 Numerical Model

2.1 Basic Equations

The ionosphere connects the highly collisionless magnetospheric plasma with the
collision dominated neutral atmosphere. Thus the ionospheric dynamics requires
to include various effects which are not present or are unimportant in the highly
collisionless plasma of the magnetosphere. The neutrals are a source of plasma
in the case of ionization processes (e.g., due to energetic particle precipitation),
they exert a frictional drag on the electrons and ions, and they provide a thermal
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contact such the heated electrons and ions loose thermal energy to neutrals
in proportion to the effective collision frequencies. Thus the equations need to
include the coupling to the neutrals. In cases where the neutral dynamics plays
a active role, a complete set of continuity, momentum and energy equations have
to be included for the neutral species.

In summary the basic equations should consider the dominant transport
terms which are ionization and recombination rates, ion-neutral, electron-neutral,
and electron-ion collisions to determine the friction and energy exchange between
the different species. Note that ionization and recombination not only appear
in the continuity equations but also exchange momentum and energy between
species. Last not least the collision frequencies depend on number densities and
temperatures such that ion and electron energy (temperature or pressure) equa-
tions are needed.

There are two further effects which ought to be considered. The Hall effect
is important in the ionosphere . In general Hall physics become important for
gradients on the ion inertia scale c/ωpi with the ion plasma frequency ωpi. The
ion inertia scale is between 1 and 10 km for typical ionospheric mass densi-
ties. Therefore Ohm’s law (electron equation of motion) has to include the Hall
term and the electron pressure term. The treatment of Hall physics in numerical
modeling is further detailed in the corresponding chapter in this volume. In the
ionosphere the Hall effect leads to the Hall currents in the lower E-region. Finally
heat conduction from the magnetosphere is important for the electron energy
budget and should be included in the electron energy equation. It is noteworthy
that in addition to other terms the complete ion momentum equation should
contain the ion inertia term. This term is usually neglected in global thermo-
spheric convection models where the velocity is computed from the friction term
in the fluid momentum equation.

The full set of equations consists of continuity, momentum, and energy equa-
tions for neutrals, ions, and electrons. Here we have assumed quasi-neutrality
because the Debye length is very small. The magnetic field is computed from the
the induction equation applied to generalized Ohms law. In the following equa-
tions the neutral equations present the sum over all individual neutral species
and the same applies to the ion or bulk plasma equations. Thus the complete
set of plasma-neutral equations [1] is given by

∂ρ

∂t
= −∇ · ρv + ιρ− βρ2 (1)

∂ρn

∂t
= −∇ · ρnvn − ιρ+ βρ2 (2)

∂ρv

∂t
= −∇ · (ρvv)− 1

2
∇p+ ρg + (∇×B)×B

+ρv(ι− βρ)− ρνin(v − vn) (3)
∂ρnvn

∂t
= −∇ · (ρnvnvn)− 1

2
∇pn + ρng

−ρvn(ι− βρ)− ρνin(vn − v) (4)
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∂B

∂t
= ∇×

(
1
ne
∇pe

)
+∇× (v ×B)

−∇×
(

1
ne

(∇×B)×B + η∇×B

)
(5)

∂p

∂t
= −v · ∇p− γp∇ · v + (ι− βρ)Tn

+(γ − 1)
[
2η(∇×B)2 + ιec − 3νinρ

mi +mn
(Ti − Tn)

+
(
mnνinρ

mi +mn
+ ιmi

)
(v − vn)2

]
+3νeffρ(Tn − Te) +

∂

∂z

(
λe
∂Te

∂z

)
(6)

∂Tκ
e

∂t
= −∇ · (Tκ

e ve) + Tκ−1
e

[
3νei(Ti − Te) + 3νeff(Tn − Te)

+
2η
n

(∇×B)2 +
ιec
n
− ιec

(γ − 1)n
+

∂

n∂z

(
λe
∂Te

∂z

)]
(7)

∂pn

∂t
= −vn · ∇pn − γnpn∇ · vn − (ι− βρ)kTn

+(γn − 1)
[

3νniρn

mi +mn
(Ti − Tn)− ιρTn +

miνniρn

mi +mn
(vn − v)2

]
+3νeffρ(Te − Tn) (8)

where ρ and ρn are the total plasma and neutral mass density;mi andmn are the
ion and neutral particle mass; Te, Ti, and Tn are the electron, ion, and neutral
temperatures; p, pe, and pn are the total plasma pressure, electron pressure, and
neutral pressure; n is the plasma number density; v, ve, and vn are plasma,
electron, and neutral velocities; B is the magnetic induction vector; g is the
gravitational acceleration; ι is the ionization rate; νin is the ion-neutral, νei is
the Coulomb, and νeff is the effective collision frequency between electrons and
neutrals; η is the resistivity; γ and γn are the ratios of specific heats for the
plasma and neutrals; ec is the average energy that goes into electron heating
for each ionization process (a typical value is 2 eV); λe is the electron heat
conduction coefficient; and κ = 1/(γ − 1). Energy conservation requires γn =
γ = 5/3.

Ionization, recombination, and electron heating is parameterized by using
input from an ionospheric transport computation [8]. The normalized resistiv-
ity considers electron-ion νei, electron-neutral νen, and ion-neutral νin collision
frequencies [17]

η = ηei + ηen + ηin (9)

with ηei = λνeiτA, ηen = λνenτA, and ηin = λνinτA where νei, νen, and νin

are the electron-ion, electron-neutral, and ion-neutral collision frequencies; τA =

l0/vA is the Alfvén time; and λ =
(

c
ωpel0

)2
is a normalization coefficient. The
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electron heat conduction coefficient λe and the effective electron-neutral collision
frequency νeff are from the TIME-GCM [16].

The equations assume: n = ne = ni, ρ = n(ne + mi), p = pe + pi, and
ρv = ρeve + ρivi.

Results of the simulation model will be displayed in physical units. However,
it is useful to employ a suitable normalization to characteristic values (which is
used in the basic equations (1) through (8)) where length scales are measured
in units of a typical length l0 = 1.0 km; plasma and neutral number density
n and nn are normalized to n0 = 50, 000 cm−3; mass me, mi, and mn to the
oxygen mass m0 = mO+ ; mass density ρ and ρn to ρ0 = n0m0; magnetic field
B to a typical horizontal magnetic field perturbation B0 = 100 nT; velocity v
to the Alfvén speed vA = B0(μ0ρ0)−1/2 (2.44 km s−1); pressure p, pe, and pn

to P0 = B2
0/(2μ0); Te and Tn to T0 = P0/(n0k) (k is the Boltzmann constant);

and time t to characteristic Alfvén transit time τA = lz0/va (0.4 seconds).

2.2 Numerical Algorithm

Most plasma fluid simulations consider a collisionless plasma where the coupling
to a background component such as a neutral gas is small. Collisions between
electrons and ions are negligible and resistive interaction is assumed to be lim-
ited to small spatial regions where turbulent wave particle interactions may be
present. In these cases the basic equations can be cast into a conservative form
yielding equations of the type

∂f

∂t
= −∂g

∂x
(10)

where for simplicity we assumed a one dimensional form. Viscosity, resistivity,
or heat conduction add a second derivative term. Further terms are added by
ionization and recombination, frictional forces, and thermal contact involving
different fluids and yield equations of the type

∂f

∂t
= −∂g

∂x
+ ν

∂2f

∂x2 − μf (11)

With ν = 0 this partial differential equation (PDE) is hyperbolic. However,
for ν �= 0 the equation becomes parabolic and for very large values of ν and
μ the time derivative is negligible and the equation becomes an elliptic partial
differential equation. The method for the numerical simulation has to be stable
for different types of differential equations and sufficiently accurate to solve the
system (1) to (8) accurately. Considering the complexity of these equations the
method should be reasonably simple for the actual implementation. Particularly
fully implicit methods as well spectral methods require the inversion of large
and highly complex matrices [3]. Some common methods to solve hyperbolic
fluid equations are discussed in the sections on global MHD simulations.

The method chosen for the simulation of the plasma-neutral equation uses
the DuFort-Frankel scheme [14,11] with an additional iterative step to evaluate
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the term μf . Explicitly we discretise this equation in the following form

f+
i − f−i
2Δt

= −g
0
i+1 − g0i−1

2Δx
+ ν

f0
i+1 − f+

i − f−i + f0
i−1

Δx2 − (μf)0i (12)

where upper indices +, 0, and − indicate the time level of the integration (each
separated by Δt), and lower indices correspond to the spatial grid indices. Here
the time centered term −2f0

i is approximated through−(f+
i +f−i ) in the DuFort-

Frankel scheme. Provided 〈μf〉0i is available the full integration step becomes

f+
i = f−i + 2ΔtHi (13)

with

Hi =
1

1 + α

[
−g

0
i+1 − g0i−1

2Δx
+ν
f0

i+1 + f0
i−1 − 2νf−i
Δx2 − (μf)0i

]
(14)

and α = 2νΔt/Δx2. A schematic of this integration scheme is shown in Fig. 2.
However, μf is not available at time level 0 and grid index i. Therefore a two
step process is applied with a first step in which (μf)0i is evaluated from a spatial
average and is corrected in the second step.

f̃0
i = f−i +ΔtHi

(
〈μf〉0i

)
(15)

f+
i = f−i + 2ΔtHi

(
μ̃f

0
i

)
(16)

The corresponding scheme is stable subject to the conditions

Δt < min
[
u

Δx
,
1
μ

]
(17)

where g = uf was assumed. For the actual scheme the velocity u should be
replaced by a typical phase speed which is the fast mode speed for MHD appli-
cations and the maximum of fast mode and whistler speeds when the Hall term
is included. Note that the maximum whistler phase and group velocities scale as

u =
ω

k
∼ vA πc

ωpiΔx
, (18)

x

time

i

+

0

-

++

i-1 i+1

Fig. 2. Schematic of the integration scheme.
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i.e., it is dependent on the grid resolution (see also the chapter on Hall Magneto-
hydrodynamics). For ionospheric applications typical collision frequencies are of
the orders of a few 103 s−1 which usually dominate the term u/Δx. The stability
condition is equivalent to the condition for physical accuracy which requires to
resolve the propagation of typical waves and the fastest relaxation processes.
The scheme is expected to provide second order accuracy. For ν, μ = 0 the
scheme reduces to the well known Leapfrog scheme. In addition we employ a
small viscosity that is applied only locally if grid oscillations occur.

It should be noted that a detailed numerical stability analysis for the full
set of basic equations is not available for several reasons. The usual stability
analysis assumes a homogeneous background and considers linear perturbations.
For most integration schemes single equations or simple sets of coupled equations
are used in the stability analysis. A large system of coupled partial differential
equations will generate a correspondingly large number of Eigenvalues which
determine the stability. To our knowledge this task has not been carried out for
the coupled plasma neutral equations. For nonlinear perturbations the numerical
stability analysis has to be able to distinguish between physical and numerical
instability. This problem is actually more complicated than the analysis of the
physical instabilities, which is one of the reasons for performing a numerical
simulation in the first place.

For the present case numerical properties are implied and tested using sim-
plified equations or basic physics such as wave propagation, ionization, the de-
celeration of the plasma component due to the friction with the neutral gas,
frictional heating, and the cooling through thermal contact. We will consider
some of these aspects in the following sections.

2.3 Boundary Conditions

Periodic boundary conditions are used in the x direction, which allows waves
to propagate freely through the system. At the top boundary of the system free
boundary conditions are used for most quantities; that is, the value at the bound-
ary is computed from its value inside the physical boundary of the system by
extrapolation. This maintains the initial perturbation for the Alfvén waves and
allows the transmission of the waves which are reflected in the lower ionosphere.

At the lower boundary of the simulation box (base of the ionosphere), the
densities ρ, ρn, pressures p, pe, pn, and temperatures Te and Tn, are given by
continuous boundary conditions; that is, the boundary values of these quantities
are computed by extrapolation. For the magnetic field B, current j, and plasma
velocity v, however, we determine the boundary values using Ohm’s law.

The boundary values for ρ and p, are used to compute the collision frequencies
νen, νin, and νei and the Pedersen and Hall conductivities. The electric field is
extrapolated from the physical boundary to a mathematical boundary and the
Pedersen and Hall conductivities are employed to compute the current density
from j = σ · E on this boundary. Similarly, the boundary value for the plasma
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Fig. 3. (a) Altitude neutral density profile for solar minimum conditions (solid line)
and solar maximum conditions (dotted line) conditions and (b) temperature profiles
for the neutral atmosphere (solid line for solar minimum, dashed and dotted lines for
solar maximum), for ions (initially identical to the neutrals), and for electrons (short
dashes branching off the neutral temperature).

velocity v is determined by

vi =
e

mi
(

νin

ω2
ci + ν2

in

E⊥ +
ωci

ω2
ci + ν2

in

E× b̂), (19)

where ωci is the ion gyro frequency and b̂ is the unit vector of unperturbed
magnetic field. Finally, the magnetic field B is determined from the relation
j = ∇×B.

2.4 Initial Configuration and Perturbation

The following applications of the plasma neutral simulation model employ an
ionospheric region which extends from 100 km (lower E region) to 1100 km
altitude with the main magnetic field in the vertical direction. We use Carte-
sian coordinates in the simulation with x and y (invariant) perpendicular to
the main magnetic field (in the horizontal direction) and z is upward along the
unperturbed magnetic field (which is directed downward in the northern hemi-
sphere).

The grid is uniform in the horizontal (x) direction. In the vertical direction
a non-uniform grid is used with a maximum resolution of 4 km at the base of
the simulation box. The collision terms are only computed up to an altitude of
800 km. Above this the collisional effects are negligible for the considered time
scales. Similarly the neutral dynamics is only required up to this altitude.

The neutral gas is initially in hydrostatic equilibrium with a temperature
Tn and density nn chosen for solar minimum and solar maximum conditions
(Fig. 3) from the Mass Spectrometer Incoherent Scatter (MSIS) model [4,15].
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Fig. 4. Sketch of the initial perturbation

The neutral number density and temperature profiles are significantly different
at high altitudes for solar minimum and solar maximum conditions.

An initial perturbation of the plasma velocity and the horizontal magnetic
field is applied at the top boundary with

vy =
vy0

2
(1 + tanh(0.015(z − 800))) tanh(2.0(x+ 6.0)) (20)

for x < 0 and

vy = −vy0

2
(1 + tanh(0.015(z − 800))) tanh(2.0(x− 6.0)) (21)

for x ≥ 0, and the magnetic field perturbation is given by

By = −vy√μ0ρ. (22)

The perturbation defined in (9), (10), and (11) is part of the initial conditions
and must be consistent with the boundary conditions. This initial perturbation
propagates down into the ionosphere as a pair of Alfvén waves (Fig. 4) which
produce two field-aligned current layers at x = −6 km (upward) and x = 6 km
(downward). The normalized amplitude is vy0 = 1.0, which corresponds to 2.44
km s−1.

The initial magnetic field perturbation is illustrated in the contour plot in
Fig. 5 which shows the horizontal magnetic field perturbation (the perturbation
is pointing into the plane) and the magnetic field-aligned electric current between
the two Alfvén waves. The velocity perturbation has exactly the same shape as
the magnetic field perturbation.

3 Results

3.1 Ion Heating

The initial magnetic and velocity perturbations propagate down into the iono-
sphere and are reflected in the lower F- and in the E-region (100 to 150 km
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Fig. 5. Initial magnetic field, velocity, and field-aligned current density

altitude). The reflection occurs at about 0.6 seconds into the simulation and
Fig. 6 shows the waves just after the reflection from the lower ionosphere. The
physical cause for the reflection is twofold. The increasing ion number and mass
density in the lower ionosphere generates a partial reflection because of the higher
inertia of the plasma. However, most importantly the very large ion-neutral col-
lision frequency in the lower ionosphere does not allow the ions to move freely.
The Alfvén wave is not able to accelerate the ions to a velocity which maintains
the amplitude and is thus reflected.

On large scales the reflection is necessary because an approximate steady
state requires

Jp =
δBy

μ0
= ΣpBzδvy (23)

Magnetic Field 
      By (nT) 

time
   0.82 s

Max=
  169 

Min=
 -169

12 6 0 -6 -12

 Field-aligned Current
     Density (μA m-2)

time
   0.82 s

Max=
  234

Min=
 -229

12 6 0 -6 -12

Velocity Vy(km s-1)

x (km)

z

time
   0.82 s

Max=
  2.2 

Min=
 -2.2 

100

200

300

400

500

600

700

800

12 6 0 -6 -12
x (km)x (km)

Fig. 6. Magnetic field, velocity, and field-aligned current density short after the reflec-
tion of the Alfvén waves from the lower ionosphere



Fluid Simulation of Coupled Systems 203

Fig. 7. Ion heating through the Alfvén wave for different solar conditions

where Jp and Σp are the height integrated Pedersen current and conductivity,
δBy and δvy are the magnetic and velocity perturbation in the top ionosphere,
and Bz is the dipole magnetic field component. Thus the reflected wave is needed
to adjust the perturbation to be consistent with a steady state δBy/δvy =
μ0ΣpBz. The corresponding reflection coefficient for the Alfvén wave is

r =
μ0vAzΣp − 1
μ0vAzΣp + 1

(24)

with vAz being the Alfvén speed based on the dipole field.
The interaction with the lower ionosphere has a number of interesting aspects.

The plasma motion associated with the Alfvén wave causes enhanced plasma
neutral friction that heats the plasma. This heating is largest in the region where
the collisions are highest and at the time when the plasma velocity is fastest.

Figure 7 illustrates the evolution of the ion temperature as a function of
time and height at x = 0 for solar maximum and solar minimum conditions.
Solar maximum conditions use a neutral temperature of about 1500◦ compared
to about 800◦ for solar minimum conditions. Correspondingly the neutral atmo-
sphere is more expanded and of higher density at greater altitudes thus leading to
higher ion-neutral collision frequencies. The resulting friction heats the plasma
therefore at greater heights and in a more extended region during solar max-
imum conditions. The plot illustrates that in both cases ion heating does not
occur until the wave has reached the lower ionosphere. This plasma is cooled
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through the thermal contact to the neutrals. In the absence of ionization and
heat conduction (both of which are small for this case) the ion temperature is
determined from equations (6) and (7) as

∂Ti

∂t
= − νinmi

mi +mn
(Ti − Tn) +

1
3kB

νinmn

mi +mn
(v − vn)2 (25)

Thus both the heating rate through the velocity source term and the cooling rate
through thermal contact with the neutral are proportional to the ion-neutral col-
lision frequency. After the initial impact of the Alfvén wave the velocity settles to
an approximate steady state and the ions assume time asymptotically a constant
temperature

Ti − Tn =
mn

3mi
(v − vn)2 (26)

The e folding time to relax to the steady temperature can be obtained by a
cut a constant altitude in Fig. 7. It is fastest at lower altitudes because it is
proportional to the ion-neutral collision frequency. Note that the ion temperature
evolution also depends significantly on the altitude profile of the ion velocity
which is established in this interaction. For the considered case the decay time
for the temperature from equation 25 agrees well (within 5%) with our model
results.

The velocity in the upper ionosphere does not decrease to zero after the
reflection because we have assumed a long wave train (as would be realistic)
and the velocity at greater heights is the superposition of the incoming and the
reflected wave.

3.2 Current Closure and Density Depletion

An interesting aspect of the evolution is the closure of the field-aligned electric
current. At the leading edge of the propagating Alfvén waves, the field-aligned
current is closed by a perpendicular polarization current. After the reflection
the magnetic perturbation is enhanced compared to the incoming Alfvén wave,
such that two field-aligned current layers are formed with their base in the lower
ionosphere as illustrated in Fig. 8. Note that the figure shows only the region
from 100 km to 300 km altitude for better resolution.

The field-aligned current of these layers is closed by the Pedersen current.
This current is carried by ions as illustrated in Fig. 8. In the lower ionosphere the
ion-neutral collision frequency is larger than the ion gyro frequency such that the
ions do not gyrate freely and are deflected perpendicular to the magnetic field
in the direction of the electric field. However, the electron collision frequency
is smaller than the gyro frequency such that electrons are still carrying out
the E × B drift motion which points into the plane (parallel to the velocity
perturbation of the incoming and reflected Alfvén waves). Therefore the ions
carry the Pedersen current that closes the parallel currents and the electron Hall
current is in the perpendicular direction.

The field-aligned current is carried by electrons because of the small inertia
of the electrons (in this simulation electron inertia is in fact neglected) as shown
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Fig. 8. Current density (top left), bulk or ion velocity (top middle), electron velocity
(top right), plasma density (bottom left), Pedersen conductivity (bottom middle), and
Hall conductivity (lower right)

in the top right plot of Fig. 8. The fact that the parallel current, which is carried
by electrons, is closed by the ion Pedersen current has an interesting implication.
Because of charge neutrality the divergence of the current density is zero∇·j = 0.
This, however implies that ∂n/∂t = ∇ · nve = ∇ · nvi �= 0. Thus the number
density and the mass density has to change at the base of field-aligned current
layers in the ionosphere. The density is increasing in layers with an upward
current and it is decreasing in layers with a downward current. The mechanism
is illustrated in Fig. 9.

The effect is quantitatively demonstrated in Fig. 10 for the converging and
diverging currents at the base of the two current layers and outside the current
layers. Within 8 seconds the density increases by almost a factor of 2 at the
base of the upward current layer (top in Fig. 10) and it decreases by 85% at
the base of the downward field-aligned current (bottom plot). The decreasing
density outside the current layers is caused by recombination and is provided as
a reference. Note the different color scale in each plot in Fig. 10.
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Density Depletion by Downward Field-Aligned Current
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Fig. 9. Sketch illustrating the divergence and convergence of electron and ion currents

In this example we have imposed a field-aligned current of about 140μA/m2

yielding an electron velocity of close to 5 km/s in the main field-aligned current
layers. Using the continuity equation and a scale of about 20 km for the gra-
dient in the electron velocity yields a time scale of a few seconds for changes
in the density consistent with the results shown in Fig. 10. Thus field-aligned
current can play a very significant role to modify the ionospheric density (in
addition to precipitation or local instabilities). It is also worth pointing out that
the modification in the electron density leads to a corresponding change in the

Fig. 10. Electron number density in the upward (top), downward (bottom) current
layers and outside the field-aligned current
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conductivities (Fig. 8). These in turn have an influence on the reflection of Alfvén
waves and thus on the field-aligned current structure. Figure 8 demonstrates that
the up- and downward currents are not anymore symmetric after only 8 seconds
into the evolution. The change in the electron density lead to a widening of the
upward current channel and a narrower downward current.

The simulation also allows to compare the currents which are directly com-
puted from ∇×B with the usual Hall jh = σhb̂× E and Pedersen jp = σpE⊥
currents, e.g. [15], where b̂ is the unit vector along the dipole field where we use
the electric field from equation (4) and

σp =
en

B

(
νenωce

ω2
ce + ν2

en

+
νinωci

ω2
ci + ν2

in

)
σh =

en

B

(
ω2

ce

ω2
ce + ν2

en

− ω2
ci

ω2
ci + ν2

in

)
The resulting currents agree excellent with the currents directly computed

from the magnetic field perturbation in the region below about 200 km. Above
this region the inertia terms (and possibly also pressure gradients) become im-
portant which are neglected in the derivation of Hall and Pedersen conductivities.

3.3 Ionization and Current Layer Dynamics

Thus far we have not addressed the effects of ionization caused by particle pre-
cipitation. The simulation model allows to switch on electron precipitation in
pre-defined regions at the boundary. Depending on the neutral atmosphere, the
precipitating energy flux, and the characteristic energy, ionization rates are com-
puted by including parameterized results from energetic particle transport com-
putations [8]. Note that while the precipitating flux carries some current, this
current is often negligible and most of the field-aligned currents at ionospheric
heights appear to be carried by thermal electrons.

Precipitation of energetic particle has a number of effects. First it will result
in ionization which, for intense aurora, can change the local number density by
an order of magnitude in seconds. The secondary collisions will cause significant
heating of the electron fluid (which is cooled through the thermal contact to the
neutrals) and the increasing number density will cause a different reflection of
Alfvén waves and thus change the dynamics of field-aligned current generation.
To illustrate this Fig. 11 shows the result of a very simple computer experiment
with our model.

Here we use the same configuration as in the previous results but the model
switches on precipitation with an energy flux of 40 mW/m2 and a characteristic
energy of 400 eV. However, this precipitation is switched on only in the region
from −10 km < x < −2 km with no precipitation (and ionization) outside of this
region. Figure 11 show the resulting field-aligned current layers, the ion velocity,
and the electron velocity in the entire region (top). The field-aligned current is
again carried by the electron component and the Pedersen current by ions.
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Fig. 11. Current density, ion velocity, and electron velocity in the entire simulation
region (to a height of 300 km) and magnified for the region from x = −4 to x = 0
(bottom)

The top plot demonstrates two additional thin current layers in the vicinity
of the upward current. The two additional current layers are located exactly at
the precipitation boundaries. The current in the additional filaments is directed
downward at higher altitudes and upward at the base of the ionosphere. This
odd behavior has a rather simple explanation.

The ionization increases the number density in the precipitation region and
thus also the Pedersen conductivity as illustrated in Fig. 12. This is for instance
also expressed by the lower electron velocity in the main upward current layer
which is due to the higher density thus maintaining the number flux and current
at a fairly constant level. In the region of higher density the magnitude of the
total Pedersen current increases and the current spreads over a larger extent in
height.

Therefore the Pedersen current in the unperturbed region has to be deflected
upward (through a field-aligned component carried by electrons) to close into
the upward field-aligned current (which has a now a higher base). In addition
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Fig. 12. Plasma density, Pedersen, and Hall conductivity

the larger total Pedersen current requires to draw some downward field-aligned
current at the precipitation boundaries.

Note that this interpretation uses largely the concept of Pedersen currents
which is strictly not valid on small spatial and temporal scales. However, the
mechanism can be formulated in terms of Alfvén wave reflection with the same
results. For instance the region where the up and downward component of the
filamentary current diverges is located at the maximum in number density.

4 Discussion

Presented are a few relatively simple examples for small scale magnetosphere-
ionosphere coupling simulations. It is important to emphasize that all of the
examples require the propagation of Alfvén waves which in turn requires the
ion inertia term. Without this term the the usual wave solutions for the fluid
plasma are not present and it is not possible to study the formation of field-
aligned current layers in the ionosphere.

In our first example we presented the ion and Joule heating as a result of
Alfvén wave reflection. This example is a convenient test for the source terms
of the set of plasma-neutral equations. Joule heating is an important aspect for
the neutral dynamics and it can provide a pressure gradient to force an ion up-
flow. In global models Joule heating is usually underestimated in regions of high
auroral activity. The probable cause is the large scale averaging that is implied
by global models which basically eliminates the large amplitudes (electric field,
plasma velocity) of the small scale fluctuations.

The second example illustrates the formation of field-aligned current layers.
It is demonstrated that strong field-aligned current layers can lead to a rapid
modification of the ionospheric densities at the base of these current layers.
These modifications like strong density gradients can cause local instabilities,
change the local conductivities and are thus a source for ionospheric structure.
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The density modifications also provide a nonlinear feedback to the system be-
cause they alter the way in which Alfvén waves are reflected and thus alter
the field-aligned current structure. An aspect which we omitted is the strong
electron heating in the field-aligned current. While energetically less important,
this heating can provide a significant vertical pressure perturbation and may
significantly contribute to upward ion acceleration.

The interaction of precipitation and Alfvén wave reflection can contribute to
the generation of ionospheric structure and filamentary currents. While precipi-
tation may not carry a major amount of field-aligned currents, thin precipitation
boundaries are likely to be very important for field-aligned formation.

Finally it is worth to note that although we have used the picture of Hall
and Pedersen currents the assumption to derive the corresponding conductivities
may not be valid on small temporal and spatial scales in particular for F-region
dynamics where the dynamic time scales can compete with the collision time
scales such that plasma inertia becomes important.

Results for an actual auroral event [6] using this simulation code provide
strong evidence for the presence of strong field-aligned current in the vicinity of
discrete aurora [19].
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Global Magnetohydrodynamics – A Tutorial

Joachim Raeder
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Abstract. Global modeling and simulation of the complex Earth’s space environment
requires thorough understanding of the physical processes, the application of robust
and sophisticated numerical techniques, an efficient implementation of the numerical
algorithms, including parallelization, and comprehensive evaluation against data. This
tutorial and review article introduces and discusses the very foundation of global mod-
eling: the choice of numerical grids, the governing equations, numerical algorithms, er-
ror estimates, boundary conditions, magnetosphere-ionosphere coupling, and coupling
with a thermosphere-ionosphere model. Two examples, simulations of a magnetospheric
substorm and of a magnetic storm, show the utility as well as the limitations of the
model and exemplify the current state-of-the-art and the lessons learned during the
past decade. This article should help non-specialists to understand what goes into such
models, what their main use is, and where global models have limitations. Those who
are more familiar with global and large-scale models will find a review of latest results.

1 Introduction

Global modeling of geospace, that is, of the magnetosphere-ionosphere-thermo-
sphere system, began about 20 years ago with the first simple magnetohydrody-
namic (MHD) models of the solar wind - magnetosphere interaction [42,48]. It is
thus a relatively young discipline compared to, for example, the modeling of the
atmosphere. However, over this comparatively short period enormous progress
has been made. While the first models were two-dimensional, it was soon real-
ized that the magnetosphere is intrinsically three-dimensional, and such models
appeared soon thereafter [18,55]. The next big step was the inclusion of electro-
dynamic ionosphere models that provided the closure of field-aligned currents
(FACs) and the connection between magnetospheric and ionospheric convection
[23,38,60,68,81]. These model extensions followed the realization that the iono-
sphere might, at least in part, control magnetospheric convection, and thus the
magnetospheric dynamics in general. At this stage, the models were largely used
to reproduce the large scale magnetospheric morphology and to investigate basic
physical processes. However, it was not clear whether or not the model results
and the underlying assumptions of magnetohydrodynamics were even correct, al-
though they seemed to give correct answers for some parameters, for example the
bow shock and magnetopause standoff distance. The ISTP program brought the
first direct comparisons of model results with in situ measurements [25,26,65].
Since then there has been a flurry of model-data comparisons; too many to men-
tion them all here. However, there have been several activities in which system-
atic comparisons were made, in particular the NSF/GEM convection challenge
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(see [50] and other articles in that issue) and the NSF/GEM substorm challenge
(see [66] and other articles in that issue.) These studies have been particularly
useful to assess the capabilities and limitations of current state-of-the-art models,
that is, they (and other studies) have shown that global geospace models have
now truly predictive capabilities. However, they have also shown deficiencies in
many areas that require continued model development. Nevertheless, the models
have become sufficiently efficient and sophisticated that they are now considered
for use in the applications branch of space science – operational space weather
forecasting.

In the following we discuss the physical and numerical foundation of global
modeling, the coupling of different regions and processes, and examples of global
simulations of substorm and storm events.

2 Global Modeling – Things to Consider

Ideally, the magnetosphere-ionosphere system should be modeled using the
Vlasov equations, i.e., the collisionless Boltzmann equations for the plasma
species together with Maxwell’s equations for the fields. Because this is imprac-
tical given the limited computer resources, the magnetohydrodynamic (MHD)
equations are commonly used as the basis of a numerical model. Although the
MHD equations appear relatively simple at a first glance, the development of
efficient and accurate numerical algorithms for their solution is a formidable task
that has not yet come to conclusion. For magnetosphere modeling the problem
is exacerbated by the presence of multiple spatial and temporal scales. Therefore
numerous different approaches have been developed, and the existing models dif-
fer in many respects. However, a number of issues is common to all models, and
we discuss in the following their relevance and the advantages and disadvantages
of various approaches.

2.1 Simulation Geometry and Numerical Grids

Any large-scale simulation starts with the choice of a numerical grid and the
associated numerical methods. In the case of global simulations of Earth’s mag-
netosphere the simulation boundaries should be well within supermagnetosonic
flows, i.e., generally ≥ 18 RE from Earth on the sunward side, ≥ 200 RE in the
tailward direction, and ≥ 50 RE in the transverse directions. However, these val-
ues are only a guide. For example, if the solar wind magnetosonic Mach number
is very low the bow shock can move to several 10’s of RE upstream, in which
case the sunward boundary must be farther away from Earth to keep the bow
shock within the simulation domain.

There is a variety of choices for numerical grids. However, none of them is
optimal and they all have their distinct advantages and disadvantages. Conse-
quently, virtually all possible grid approaches have been used to some extent.

Uniform Cartesian grids, like the one shown in Fig. 1a provide lowest pro-
gramming overhead, lowest computing overhead, essentially no memory over-
head, easiest parallelization, and near perfect load balancing for parallelized
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(a) (b) (c)

(d) (e)

Fig. 1. Several common choices for numerical grids: (a) a uniform Cartesian grid, (b)
a stretched Cartesian grid, (c) a non-Cartesian grid with Cartesian topology, (d) a
structured adaptive grid, (e) a unstructured grid

computation [55,88,56]. The major drawback is that such grids are not adapted
to the solution. Consequently computational resources are wasted where they
are not needed (in regions where the solutions are smooth) while other regions
are under resolved, for example, sharp gradients and shocks.

Stretched Cartesian grids like the one shown in Fig. 1b can be better adapted
to the solution, while maintaining essentially all of the advantages of a uniform
Cartesian grid [60,83]. In the case of global magnetospheric simulations such
a grid can actually be quite well adapted, providing high resolution in the X
(sun-Earth) direction at the bow shock and the magnetopause, high resolution
in the Z direction in the tail plasma sheet, and substantially lower resolution
almost everywhere else. Consider a typical simulation box that is 300×100×100
R3

E = 3×106 R3
E large. At a uniform 0.25 RE resolution such a grid would

require 1.92×108 cells, whereas a stretched Cartesian grid can achieve a 0.25
RE resolution in the critical parts of the magnetosphere with ∼1-2×106 cells.
Thus, a stretched Cartesian grid requires about two orders of magnitude less
computational resources. Such a grid is used, for example, in the UCLA code
[60,68,64].

Grids as shown in Fig. 1c (non-Cartesian, but with Cartesian topology) are
irregular but still with a regular connectivity between grid cells. This allows
the grid better to be adapted to the solution with only small overhead in com-
putation, however, post-processing and visualization becomes significantly more
difficult. The Lyon-Fedder-Mobarry (LFM) code [49,24] uses such a grid.

A relatively new gridding strategy is based on overlaying grid patches with
increasingly smaller resolution, such as shown in Fig. 1d. This approach is often
call “structured adaptive mesh refinement” (SAMR) when combined with the
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dynamical adaptation of the grid to the solution, that is, grid patches are created
and destroyed as the solution evolves in time [10,9]. The ratio of the gridsize
between different levels in the grid hierarchy is a fixed integer (usually 2 or 4),
and so is the timestep. Different refinement strategies are possible, like a block
structure in which all patches are of the same size and ordered in a tree (for
example, the BATS‘R’US code of the Michigan group [59,29]). SAMR promises
the most accurate solutions for a given number of grid cells. However, SAMR
incurs substantial programming and computer overhead. Parallelization and load
balancing of SAMR codes is extremely difficult.

Unstructured grids, like the one shown in Fig. 1e are suitable for finite element
(FE) and finite volume (FV) methods. They are often constructed from triangles
(in 2d) or tetrahedrons (in 3d), but other basic building blocks are also possible.
Despite their geometrical flexibility, unstructured grids are rarely used in plasma
simulation because of their high programming and computational overhead and
because of the difficulty to parallelize such codes.

2.2 The Governing Equations

Although the magnetohydrodynamic (MHD) equations are often under scrutiny
when applied to space plasmas, experience has proven that they are adequate in
many situations where the spatial scale of interest is larger than the ion gyro-
radius and the ion inertial scales, and the temporal scale is longer than the ion
gyroperiod. In assessing the validity of the MHD equations one must consider
that they are conservation equations. Specifically, MHD describes the conserva-
tion of mass, momentum, energy, and magnetic flux. As far as the plasma is
concerned the only significant underlying assumption is that the velocity distri-
bution functions of the plasma constituents are only a function of |v − vd| in
phase space, where vd is the drift speed (first moment of the distribution). This
is trivially fulfilled for a Maxwellian distribution and causes all moments higher
than the scalar pressure to vanish (in the case of a Maxwellian distribution),
or at least to decouple [8]. Violations of the f(v − vd)=f(|v − vd|) assumption
are mostly mild in large parts of the magnetosphere. However, they can be sig-
nificant in the ring current, in regions of strong diffusion, and possibly in the
plasma sheet. In places where such deviations from a symmetric distribution
occur higher order moments, for example the heat flux tensor, come into play.
The correct closure of the equation set becomes then becomes an issue [34,35].
In some cases it is possible to augment the MHD equations appropriately (for
example by adding anomalous diffusion terms); however, in other cases (for ex-
ample, the ring current) a different formalism is indicated [89].

The MHD equations can be written in different forms, which are all mathe-
matically equivalent, but generally lead to different numerical methods. In the
following, the symbols have their usual meaning, e.g., B and E are the magnetic
and electric field, respectively, v is the plasma velocity, ρ is the density, p is the
pressure, j is the current density, η is a resistivity, I is the unit tensor, and γ is
the ratio of specific heats.
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Non-conservative (Primitive Variable) Formalism

∂ρ

∂t
= −∇ · (ρv) (1a)

∂v

∂t
= −(v · ∇)v − 1

ρ
(∇p− j ×B)(1b)

∂p

∂t
= −(v · ∇)p− γp∇ · v (1c)

∂B

∂t
= −∇×E (1d)

∇ ·B = 0 (1e)

E = −v ×B + ηj (1f)

j = ∇×B (1g)

The primitive variable formulation leads to numerical schemes that do not
strictly conserve momentum and energy, even in the hydrodynamic case. Such
schemes do not guarantee correct shock speeds and correct jump conditions at
discontinuities [41]. Furthermore, the convective derivative (v · ∇) is difficult to
treat numerically. Although the use of the primitive variable formulation leads
to algorithms with low memory requirements, its use should be avoided because
much better approaches are available.

Full Conservative Formalism

∂ρ

∂t
= −∇ · (ρv) (2a)

∂ρv

∂t
= −∇ · {ρvv + I(p+

B2

2
)−BB

}
(2b)

∂U

∂t
= −∇·{(U + p)v + E ×B

}
(2c)

∂B

∂t
= −∇×E (2d)

∇ ·B = 0 (2e)
E = −v ×B + ηj (2f)
j = ∇×B (2g)

U =
p

γ − 1
+
ρv2

2
+
B2

2
(2h)

The full conservative formulation allows the application of conservative fi-
nite difference schemes that strictly conserve mass (�), momentum (�v), energy
(U), and magnetic flux. This formulation is therefore always preferable. It may
lead, however, to difficulties in low β regions (β = p/(B2μ0) is the ratio of the
plasma pressure to the magnetic field pressure) where the pressure becomes the
difference of two large numbers. Numerical errors can then cause nonphysical
negative pressures. A semi-conservative form of the equations may then be more
appropriate.
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Gas Dynamic Conservative (Semi-conservative) Formalism

∂ρ

∂t
= −∇ · (ρv) (3a)

∂ρv

∂t
= −∇ · (ρvv + pI) + j ×B (3b)

∂e

∂t
= −∇ · ({e+ p}v) + j ·E (3c)

∂B

∂t
= −∇×E (3d)

∇ ·B = 0 (3e)
E = −v ×B + ηj (3f)
j = ∇×B (3g)

e =
ρv2

2
+

p

γ − 1
(3h)

The semi-conservative formulation allows for difference schemes that numer-
ically conserve of mass (�), momentum (�v), and plasma energy (e), but with
no strict conservation of total energy. On the other hand, low β regions pose
no difficulty. This approach can be combined with a full conservative scheme
by integrating both energy equations (2c) and (3c) and using a ‘β switch’, as
suggested by Balsara and Spicer [7].

The above equations are normalized with arbitrary normalization factors (3
of them are independent.) This is possible because the MHD equations have
no intrinsic length or time scale. This changes, however, when Earth’s dipole is
introduced, which essentially provides the normalization of the magnetic field.

Frequently the ideal (that is, non-dissipative) MHD equations need to be
augmented with a term for anomalous resistivity η. While any numerical code
produces numerical resistivity, enough to enable magnetic reconnection, in some
circumstances this may not be sufficient. A notable example is the dynamical
evolution of substorms [67]. Although the precise mechanisms that cause anoma-
lous diffusion are not well known, it is generally believed that anomalous diffusion
is a function of the local current density, thus a suitable parametrization is given
by, for example:

η = αj′2 if j′ ≥ δ, 0 otherwise (4)

j′ =
|j|Δ
|B|+ ε (5)

where j′ is a normalized local current density, Δ is the grid spacing, and δ and
α are empirical constants [64].

2.3 Boundary and Initial Conditions

The outer boundary conditions of the simulation domain are relatively straight-
forward. However, the inner boundary, where the magnetospheric field meets the
ionosphere, is much more involved.

Sunward Side. The boundary conditions can be either arbitrary (fixed or time
dependent), or measured solar wind data can be used. However, solar wind data
are usually limited to one (or at best a few) solar wind monitors, thus there is
very little knowledge of the true 3d structure of the solar wind. This leads to a
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Fig. 2. Initial magnetic field constructed with a mirror dipole

problem with Bx: The three-dimensional structure of the solar wind needs to be
known because

∇ ·B = 0 ⇐⇒ n · (Bupstream −Bdownstream) = 0, (6)

across any discontinuity in the IMF. This implies that Bx = Bn cannot change
if solar wind parameters are independent of Y and Z (simple extrapolation). A
possible solution is to find the predominant normal vector n in the sense that all
solar wind discontinuities during some time period are only a function of n. This
is difficult with a single solar wind monitor; however, boundary normal methods
(for example, the minimum variance method [76,77]) can be applied.

On All Other Sides. Here, free flow conditions can be applied, i.e.,

∂Ψ

∂n
= 0 (7)

for all variables Ψ , except for the normal magnetic field which must be derived
from the ∇ ·B = 0 condition and which must be consistent with the numerical
scheme.

Magnetic Field Initial Conditions. The magnetic field can be initialized by
the superposition of dipole with mirror dipole to create Bx = 0 surface sunward
of Earth (see Fig. 2). The field on sunward side is then replaced with the initial
solar wind field, providing a ∇ ·B = 0 transition.

Plasma Initial Conditions. The initial plasma conditions are usually given
by a cold (5000 ◦K), tenuous (0.1 cm−3), uniform plasma. From the start of the
simulation it takes about 0.5-1 hour real time for the magnetosphere to form.
However, the magnetosphere can have a substantial memory of prior conditions
(possibly many hours), thus it is advisable to provide at least a few hours lead
time from the start of a simulation up to a specific event.
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2.4 MHD Numerics

Time Differencing. Consider the model equation:

∂U

∂t
= −∇ · F (U) (8)

which is representative for the plasma part of the conservative or semi-conservative
MHD equations (2,3).

Fairly simple difference schemes can be applied to the time derivative with
second order accuracy (that is, numerical errors are proportional to Δt2; more
on that later), for example, the explicit predictor-corrector scheme:

Un+ 1
2 = Un − 1

2
Δt∇ · F (Un) , Un+1 = Un −Δt∇ · F (Un+ 1

2 ) , (9)

or the explicit leap-frog scheme:

Un+1 = Un−1 − 2Δt∇ · F (Un, Un−1) . (10)

These schemes are generally accurate enough, sufficiently simple, and re-
quire moderate storage. However, they suffer from a stability requirement (the
Courant-Friedrichs-Levy, or CFL criterion [75]) that limits the stable time step
to Δtmax:

Δtmax ≤ δmin(Δx,Δy,Δz)
|v|+ vMS

, (11)

where δ is a constant of the order O(1). The CFL criterion can be very restrictive
because Δt < Δtmax must be satisfied everywhere in the simulation domain, not
just locally. In some parts of the magnetosphere the alfvén speed can become
very large, severely limiting the stable time step. It is possible to apply the ‘Boris
correction’ [13,17] or some variant thereof which limits the alfvén speed. This
essentially entails the simultaneous reduction of the J×B and the perpendicular
(to the magnetic field) component of the ∇p force in regions where the alfvén
speed would be too high. A judicious choice of the reduction factor allows for
much larger time steps without any adverse effects on the solutions.

Implicit time differencing schemes, where the right hand side involves vari-
ables at time level n+ 1:

Un+1 = Un −Δt∇ · F (Un+1, Un, Un−1, . . .) (12)

can be unconditionally stable, but generally require the solution of large linear
systems, which is computationally very expensive and generally impractical.

Spatial Discretization. The spatial discretization of the MHD equations is
much more difficult than the time discretization. There are basically four dif-
ferent approaches: a) finite differences (FD), b) finite volume (FV) methods,
which usually reduce to FD methods on Cartesian grids, c) finite element (FE)
methods, and d) spectral methods.
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Fig. 3. Variable placement of the numerical fluxes

Since FD methods are most widely used in global magnetosphere models we
restrict the discussion to these in the following. However, many FD concepts
carry over to the other methods as well. More specifically, we focus on the dis-
cussion of conservative difference schemes since these are most suitable for global
simulations.

Consider again the model equation, but this time with emphasis on the right
hand side:

∂U

∂t
= −∇ · F (U) (13)

where U is some variable and F (U) the flux associated with that variable. Intro-
duce a regular Cartesian grid (in 2d) where the cell centers are at xi = iΔx, i =
1, . . . and yj =jΔy, j=1, . . . and the cell corners are at (xi+1/2,j+1/2,yi+1/2,j+1/2).
Discretize the right hand side of equation (13) as:

∂U

∂t
= −(fi+ 1

2 ,j(U)− fi− 1
2 ,j(U))/Δx− (fi,j+ 1

2
(U)− fi,j− 1

2
(U))/Δy , (14)

where we introduced the numerical fluxes fi+ 1
2 ,j and fi,j+ 1

2
, which are functions

of the grid values:

fi+ 1
2 ,j = Gx(. . . , Ui−1,j , Ui,j , Ui+1,j , . . .) (15)

fi,j+ 1
2

= Gy(. . . , Ui,j−1, Ui,j , Ui,j+1, . . .) , (16)

and which must be consistent with the physical flux F (U) in the following sense:

G(U, . . . , U, U, . . . , U) = F (U) . (17)

Writing equation (13) in integral form:

∂

∂t

∫
V

UdV =
∫

S

F ds , (18)

where V is an arbitrary, simply connected volume, S its surface, and s its surface
normal, it is now easy to see that the variable U is globally conserved. In Fig. 3
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this volume is taken to be one cell (i, j). Considering the cell that contains
Ui,j , any change of Ui,j must be opposite to the sum of the changes of the four
surrounding cell variables Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1 caused by the flow of U
through the cell boundaries. Thus, the sum of ∂Ui,j/∂t over the entire grid is
zero, except for the fluxes through the physical boundaries.

Using the discretization (14) only guarantees the global conservation of the
quantity U . The accuracy of the approximation is determined by the construction
of the numerical fluxes fi+ 1

2 ,j and fi,j+ 1
2
.

A few popular schemes are listed in the following; for simplicity we drop the
second dimension:

• The second order central scheme:

fi+ 1
2

=
1
2
(F (Ui) + F (Ui+1)) (19)

• The fourth order central scheme:

fi+ 1
2

=
7
12

(F (Ui) + F (Ui+1))− 1
12

(F (Ui−1) + F (Ui+2)) (20)

• The Lax scheme:

fi+ 1
2

=
1
2
(F (Ui) + F (Ui+1))−1

2
(Ui+1 − Ui) (21)

• The two step Lax Wendroff scheme: Use Lax scheme for predictor, and second
order central for corrector.

• The Rusanov scheme:

fi+ 1
2

=
1
2
(F (Ui) + F (Ui+1))− 1

4
(|vi|+ |vi+1|+ ci + ci+1)(Ui+1 − Ui) (22)

where c is the sound speed.
• The Godunov type schemes solve a Riemann problem (i.e. the decay of a step

function into waves) at the cell interface i+ 1
2 and compute the fluxes directly

from the wave propagation (see e.g. [92,20] and references therein.) This is
very accurate for gas-dynamics, but difficult for MHD because the system of
equations involves a degenerate eigenvector related to ∇ ·B = 0 [19].

Error Terms. The error terms associated with the spatial discretization can
be found via a Taylor series expansion:

Δx
∂U

∂t
= −(fi+ 1

2
− fi− 1

2
) + a1(Δx)

2 ∂
2

∂x2F (U) + b1(Δx)
3 ∂

3

∂x3F (U)

+ a2(Δx)
4 ∂

4

∂x4F (U) + b2(Δx)
5 ∂

5

∂x5F (U) + . . . . (23)

The coefficients a1, b1, etc. depend of course on the choice of the numerical flux
scheme. The error terms associated with even derivatives cause numerical diffu-
sion, that is, they tend to smear out the solution, in particular at discontinuities
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where the derivatives of the solution become large. Conversely, the error terms
associated with odd derivatives cause numerical dispersion, which manifests it-
self mostly by ripples and under/overshoots near discontinuities. Dispersion is
in a certain sense the worst enemy, because it may lead to nonphysical solutions,
such as negative density or pressure.

Ideally, one wants to construct numerical fluxes that minimize the error
terms. The order of a scheme is defined as the smallest order of the deriva-
tive with non-vanishing coefficient minus one, for example, a third order scheme
will only have error terms proportional to the fourth and higher derivatives of
the solution. First order schemes are thus primarily diffusive (with second order
diffusion terms). All symmetric central schemes have no diffusion at all, that is,
all a terms vanish. Although that may seem a desirable property, the dispersion
of these schemes makes them virtually useless for any application that involves
shocks, such as the magnetosphere, because of extreme over- and under-shoots
near the shock and other discontinuities.

A more desirable property of the numerical scheme is therefore monotonicity.
A scheme is called monotone if it lets no new extrema develop in the solution.
Of course, there may be physically relevant extrema in the solution; however,
one can show that, at least in 1d, the number of extrema is non-increasing.

Unfortunately, Harten’s Lemma [32] states that a monotone scheme is at
most first order accurate. Thus, the price for global monotonicity seems to be
the large diffusion of first order schemes, such as the Lax or the Rusanov scheme.
Harten (and others) also proposed the solution to this dilemma, which essentially
amounts to the hybridization of the numerical fluxes. Instead of using one and
the same scheme in the entire domain, a first order scheme is employed where
the gradients in the solutions are large, while in those regions where the solution
is smooth a higher order scheme is used. In its simplest form the numerical flux
is then computed as follows:

fi+ 1
2

= θi+ 1
2
fh

i+ 1
2

+ (1− θi+ 1
2
)f l

i+ 1
2

(24)

where f l is a low order (for example Rusanov) flux, and fh is a high order (for
example second or fourth order central) flux [33,94]. The conservation properties
of the scheme are preserved and do not depend on which fluxes are used and
how they are combined. Note that flux hybridization is not possible for the
non-conservative equations.

The switch function θ acts as a Flux Limiter and is generally a function of
gradients in the solution, e.g., a function of the grid values surrounding i + 1

2 .
The hybridization procedure is not always written in the above stated form
and the term Flux limiter is often used in a somewhat different, but related
context [37]. However, the principle is always the same. There is no optimal
choice for a flux limiter, and numerous schemes have been developed. Most no-
table among them are the original hybrid method [33], Flux Corrected Transport
(FCT) [14,93,94,21], Total Variance Diminishing (TVD) schemes [31,80,90,91],
Essentially Non-oscillatory (ENO) schemes [43,39], and the Van Leer flux lim-
ited schemes [84,85,86].



Global Geospace Modeling 223

Magnetic Flux Conservation. A particular difficulty of MHD simulations
(as opposed to hydrodynamic simulations) is the conservation of magnetic flux,
expressed as the Maxwell equation ∇·B=0. ∇·B=0 is an initial condition since
∇ ·B is conserved by Faraday’s law:

∇ · ∂B
∂t

=
∂(∇ ·B)
∂t

= −∇ · ∇ ×E = 0 (25)

Most numerical schemes do not a priori preserve ∇ · B. For such schemes the
accumulation of ∇ ·B can lead to serious errors, in particular spurious parallel
acceleration, wrong magnetic topology (field lines that are not closed), and sig-
nificant errors in the shock jumps [16,82]. There are a few methods to “clean”
the magnetic field of monopoles, for example the projection method:

∇2Ψ = −(∇ ·B) (26)

produces a monopole potential that can be used as a correction:

B′ = B +∇Ψ (27)

Note that the projection method requires the solution of a Poisson equation on
the global grid which can be quite costly. Because the numerical solution of this
equation has errors as well, the projection method can only achieve ∇ · B = 0
to a certain order in the gridspacing [82].

An alternative approach is to modify the MHD equations in such a way that
∇ ·B becomes a convected quantity [59,29]:

d(∇ ·B)
dt

= 0 (28)

This approach does not guarantee any limit on the accumulation of ∇ · B and
may also lead to the violation of the shock jumps [82].

A preferable approach is to use a scheme that conserves magnetic flux a
priori. Such a scheme was first introduced by Evans and Hawley [22] in the
context of MHD simulations. Flux conservation is achieved by using staggered
grids for the magnetic and electric field, such that the magnetic field components
are placed on the center of cell faces:

(Bx)i+ 1
2 ,j,k, (By)i,j+ 1

2 ,k, (Bz)i,j,k+ 1
2
,

and the electric field (the numerical flux for the B integration) on the centers of
the cell edges:

(Ex)i,j+ 1
2 ,k+ 1

2
, (Ey)i+ 1

2 ,j,k+ 1
2
, (Ez)i+ 1

2 ,j+ 1
2 ,k ,

as indicated in Fig. 4. The magnetic field time integration becomes then partic-
ularly simple, for example:

∂

∂t
(Bx)i+ 1

2 ,j,k = (29)

{(Ey)i+ 1
2 ,j,k+ 1

2
− (Ey)i+ 1

2 ,j,k− 1
2
}/Δz
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Fig. 4. Variable placement on a staggered grid for magnetic flux conserving integration
of Faraday’s law. The arrows along the cell edges indicate the electric field contributions
in the magnetic field time integration step

−{(Ez)i+ 1
2 ,j+ 1

2 ,k − (Ez)i− 1
2 ,j+ 1

2 ,k}/Δy .
and analogously for By and Bz. By advancing the field components in this way
on all 6 cell faces and summing up it follows:

∂

∂t

∫ ∫
cell

Φdf = ΔyΔz(
∂Bx

∂t
)i− 1

2
+ΔyΔz(

∂Bx

∂t
)i+ 1

2
+ΔxΔz(

∂By

∂t
)j+ 1

2
+ . . .

= {((Ey)i+ 1
2 ,j,k+ 1

2
− (Ey)i+ 1

2 ,j,k+ 1
2
)+

((Ey)i+ 1
2 ,j,k− 1

2
− (Ey)i+ 1

2 ,j,k− 1
2
) + . . .}ΔxΔyΔz = 0 , (30)

and thus the combined magnetic flux Φ through all 6 cell faces remains un-
changed (Φ = const.) during the time integration, as required by equation (25).
Note that the field can be divergence-free initialized by using a vector potential
A in place of E [22].

Coordinate Transformation for Stretched Cartesian Grids. It is partic-
ularly simple to integrate the equations on a stretched Cartesian grid. Let the
grid coordinates be given by analytic functions of the grid indices (i, j, k), that
is: x = x(i), y=y(j), z=z(k), then:

∂

∂x
F (x, y, z) ==

∂F

∂i

∂i

∂x
=
∂F

∂i

(
∂x

∂i

)−1

, (31)
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and analogously for y and z derivative. The derivatives on the regular equidistant
(i,j,k) grid need then only be multiplied with the appropriate geometric fac-

tors:
∂

∂x
F (x, y, z) =

∂F

∂i

(
∂x

∂i

)−1

(32)

∂

∂y
F (x, y, z) =

∂F

∂j

(
∂y

∂j

)−1

(33)

∂

∂z
F (x, y, z) =

∂F

∂k

(
∂z

∂k

)−1

. (34)

3 Coupling of Different Regions and Processes

Modeling the magnetosphere extends beyond solving the MHD equations. At a
minimum, the MHD model needs an inner boundary at which FACs generated
in the magnetosphere close through the resistive ionosphere. This process is
commonly implemented such that the MHD calculation only extends to within
3-4RE from Earth. Within that boundary the FACs are mapped along dipole
field lines into the ionosphere. At the ionosphere end a potential equation is
solved on a sphere (or a section thereof) to yield the ionospheric convection
potential [23]. The potential is then mapped back to the inner boundary of the
MHD calculation where it is used as boundary condition for the flow and field
integration (v = (−∇Φ)×B/|B|2). This mapping is illustrated in Fig. 5.

Fig. 5. Schematic of the field line mapping between the magnetosphere and the iono-
sphere

Such a mapping typically covers latitudes from ∼580 to 900. In the region
between the ionosphere and the inner boundary of the magnetosphere the MHD
equations are not solved. This is partly necessitated by the high alfvén speeds in
this region, and also by the fact that the relevant processes on these field lines
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are not well described by the MHD equations, but are for the most part of a
kinetic nature.

The relevance of the ionosphere for magnetospheric dynamics is best ex-
plained by the limiting cases. In the case of a vanishing ionospheric potential
Φ, equivalent to infinite ionospheric conductance, the electric field and the con-
vection velocity will also vanish (Φ = 0 −→ E = 0 −→ v = 0). Thus, there is
no convection in the ionosphere and field lines are tied. Ultimately (on a time
scale of less than one hour) magnetospheric convection has to cease as well. In
the opposite case the conductance of the ionosphere is zero which means that
no current can flow from the magnetosphere through the ionosphere (j‖ → 0).
In that case field lines slip free through the ionosphere and the Earth (because
the solid Earth’s conductivity is small). Thus, magnetospheric convection can
proceed uninhibited.

In reality the ionosphere has a finite conductance and field lines are dragged
through the ionospheric plasma, dissipating energy that must be supplied from
the magnetosphere via Poynting flux [58,78]. Thus, the ionosphere influences
magnetospheric convection, and the primary controlling factor is the ionospheric
conductance.

The magnetosphere-ionosphere coupling can be described either in a me-
chanical way, that is by calculating the stresses and motions of the ionospheric
constituents (ions, electrons, and neutrals [79]), or by treating it as an electric
circuit [87]. The latter approach is far easier to implement. Field-aligned cur-
rents are calculated at the magnetospheric boundary and used as input to the
ionospheric potential equation. The polar ionosphere can be treated as a 2d shell
to a very good approximation (because field lines are nearly radial), thus:

∇ · Σ · ∇Φ = −j‖ sin I (35)

with the boundary condition Φ=0 at the magnetic equator. Because the iono-
sphere is a magnetized and partially ionized plasma the ionospheric conductance
is a tensor [79], given by:

Σ =
(
Σθθ Σθλ

−Σθλ Σλλ

)
(36)

Σθθ =
ΣP

sin2 I
, Σθλ =

ΣH

sin I
, Σλλ = ΣP (37)

where ΣH is the Hall conductance, ΣP is the Pedersen conductance, θ is the
magnetic latitude, λ is the magnetic longitude, and I is the magnetic field incli-
nation.

The potential calculation requires the specification of the ionospheric Hall
and Pedersen conductance. These can either be assumed to be uniform (not a
good assumption), be computed using empirical formulations, or be computed
using a full-fledged ionosphere-thermosphere model.

The conductances are proportional to the ionospheric electron density (es-
sentially E-region), which in turn is primarily given by solar EUV irradiance and
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precipitation of magnetospheric electrons. The conductance contribution of the
former can be easily parameterized from measurements, for example as [54]:

ΣH = F 0.53
10.7 (0.81 cosχ+ 0.54 cos1/2 χ) (38)

ΣP = F 0.49
10.7 (0.34 cosχ+ 0.93 cos1/2 χ) (39)

where F10.7 is the solar radio flux (used as a proxy for solar EUV radiation) and
χ is the solar zenith angle. Magnetospheric electron precipitation is either diffuse
(pitch angle scattering of hot magnetospheric electrons), or discrete (accelerated
auroral electrons.) The former can be parameterized by:

FE = ne(kTe/2πme)
1
2 , E0 = kTe (40)

where Te and ne are the magnetospheric electron temperature and density, re-
spectively. FE is the energy flux, and E0 is the mean energy of the precipitating
electrons. Discrete electron precipitation can be modeled using the Knight rela-
tion [40]:

ΔΦ = Kmax(0,−j‖) (41)

K =
e2ne√

2πmekTe

(42)

FE = ΔΦ‖j‖ , E0 = eΔΦ‖ (43)

where ΔΦ is the parallel potential drop on an auroral field line.
The Pedersen and Hall conductances can then be computed using empirical

formulas, for example [73]:

ΣP = [40E0/(16 + E2
0)]F 1/2

E (44)

ΣH = 0.45E5/8
0 ΣP (45)

or by feeding the precipitation parameters, along with the potential, into a large-
scale ionosphere-thermosphere model which then computes the conductances
self-consistently from the electron-neutral collisions. The latter approach has
recently been taken by combining the UCLA magnetosphere-ionosphere (MI)
code with the NOAA Coupled Thermosphere Ionosphere Model (CTIM, [28,69]).

The CTIM part of the coupled model is a global multi-fluid model of the
thermosphere–ionosphere system with a long heritage [28]. CTIM solves both
neutral and ion fluid equations self-consistently from 80 to 500 km for the neu-
tral atmosphere and from 80 to 10,000 km for the ionosphere on a spherical grid
with 2◦ latitude resolution and 18◦ longitude resolution. The thermosphere part
solves the continuity equation, horizontal momentum equation, energy equation,
and composition equations for the major species O, O2, and N2 on 15 pressure
levels. The ionosphere model part solves the continuity equations, ion tempera-
ture equation, vertical diffusion equations, and horizontal transport for H+ and
O+, while chemical equilibrium is assumed for N+

2 , O+
2 , NO+, and N+. The
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horizontal ion motion is governed by the magnetospheric electric field. The cou-
pled model includes about 30 different chemical and photo-chemical reactions
between the species. CTIM’s primary inputs are the solar UV and EUV fluxes
(parameterized by the solar 10.7 cm radio flux), the tidal modes (forcing from be-
low), auroral precipitation, and the magnetospheric electric field, each of which is
usually taken from parameterized empirical models. CTIM provides several out-
puts that are of prime importance for space weather, for example, global two-
and three-dimensional ionosphere and thermosphere state fields, like electron
density, neutral density, neutral wind, chemical composition, NmF2, hmF2, and
total electron content (TEC). A more thorough description of CTIM, including
the detailed equations, reaction rates, and examples can be found in [28].

Magnetosphere
B,E,N,T,...

solver
potential

Ionosphere

j||
Φ

Φ

j||, ne, Te

Φ

ΣH, Σp , j ||,d

Solar wind
IMF data

MI coupling
module

model
magnetosphere

MHD

E

E0

FE

F10.7 cm
flux

Ne, Nmf2, Nmf2h,
...

CTIM
model

Fig. 6. Schematic showing the coupling between the UCLA magnetosphere-ionosphere
model with the NOAA Coupled Thermosphere Ionosphere Model (CTIM)

The coupling of the models is schematically shown in Fig. 6. The MI model
provides the electron precipitation parameters and the magnetospheric field-
aligned currents (FACs.) In turn, CTIM provides the ionospheric conductance
and the ionospheric dynamo current to the MI model. Thus, as far as the MI
model is concerned, we replace empirical conductance calculations [73] that was
used in most prior studies with first-principle calculations and also account for
the ionospheric dynamo effect. The latter effect is probably of minor importance
in most situations, but may become significant during storm recovery [72]. With
this coupling, CTIM is also driven with more realistic magnetospheric inputs
and depends on fewer empirical parameters.
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4 Examples: Substorms and Storms

An important aspect of any kind of numerical modeling is to ensure the correct-
ness of the model. Here, two issues come into play. First, one needs to verify that
the model solves the underlying equations correctly. However, because numeri-
cal models compute only approximations to the underlying equations, the issue
rather becomes to quantify the approximation errors. Ideally, this can be done
by comparing model results with known analytic solutions. For global models,
however, this approach has limitations because there are no known analytic so-
lutions that even come close to the true complexity of the magnetosphere. Thus,
much simpler analytic tests are usually conducted, for example, shock tube prob-
lems, magnetic field convection problems, equilibrium solutions, and checks of
the conservation properties of the code (mass, momentum, energy, and mag-
netic flux). Such tests give some idea of how well an algorithm works, however,
because of their simplicity they still leave open the possibility of serious errors
in the simulation of the complex magnetosphere. The second issue involves the
validity of the underlying equations themselves. Here, limited comparisons can
be made with more sophisticated local models. For example, one can compare
reconnection geometries and reconnection rates with those predicted by kinetic
models. However, such comparisons are problematic because it is virtually im-
possible to set up test cases in a way that the boundary conditions for either
model are the same. On the other hand, global models can be run with measured
solar wind and IMF data as input and their results can then be compared with
in situ observations. By doing so, both of the two issues above are addressed
at the same time. If the simulation results match the in situ data well one can
be confident that the equations are sufficient to describe the phenomena and
that the numerical solution is sufficiently accurate. Inevitably, there will also be
differences found between the simulation results and the data. Careful analysis
of these differences, together with our theoretical understanding of the physical
processes involved, will usually show if they are the result of numerical errors
or the result of deficiencies in the underlying equations and assumptions. For
example, the lack of ring current formation in global magnetosphere models is
clearly caused by the simplifications inherent in the MHD equations which ne-
glect the drift physics of the more energetic plasma populations. On the other
hand, excessive reconnection rates may be the result of numerical effects like
limited resolution or numerical diffusion.

Global geospace modeling is therefore most powerful if done in conjunction
with data analysis. Very often it is impossible to draw solid conclusion from single
(or a few) spacecraft observations. For example, a spacecraft may observe some
key signatures of reconnection in the tail; however, that is not proof that recon-
nection actually occurs because other processes could produce indistinguishable
signatures. This is the essence of current debates about the nature of substorms
[45,53,6,5]. On the other hand, a simulation alone, showing reconnection, proves
nothing because the simulation may simply be wrong for a variety of reasons,
for example bad input data, lack of resolution, too much dissipation, or miss-
ing physics. A typical example is the question of whether or not the magnetotail
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closes during extended periods of northward IMF [61,30,62]. Here, different mod-
els give different answers, and only a study that includes both simulations and
data can be convincing. Furthermore, it is essential to test the limits of any given
model, and the only possible ground truth are the observations. Global models
distinguish themselves here from local models because they are actually testable
by running them with measured input data and comparing the results with in
situ observations. Local models, on the other hand, are virtually not testable
because the boundary conditions are not precisely known.

That said, we compare two simulations – run with measured solar wind input
– and compare the results with data. These two simulations address key issues
in magnetospheric research: substorms and storms.

4.1 Substorms

The substorm of November 24, 1996, with onset at ∼2230 UT was chosen as a
“GEM challenge” event because it was a typical isolated substorm following an
extended period of magnetospheric quiet [66].

Figure 7a shows the IMF and solar wind data for the period of interest.
After an extended period of northward IMF the IMF turns southward at around
2100 UT. Over the following 90 minutes the substorm growth phase commences
until the expansion phase onset occurs around 2230 UT. It is not clear from the
data (see below) whether the onset is triggered by the IMF northward turn [51]
around this time; the simulation shown here indicates that this is not the case.

Figure 7b shows ground magnetometer data from the IMAGE chain com-
pared with results from the simulation. The simulation captures the essence of
the onset; however, the growth phase electrojets are stronger in the simulation,
the onset is weaker, and the expansion phase is shorter.

Figure 8A compares, among other things, the polar cap magnetic flux from
the simulation with estimates from Polar VIS data. Both the simulation and
the data show an increase during the growth phase; however, the data indicate
a larger saturation value. The beginning of the decrease coincides roughly with
the expansion phase onset.

Figure 8B compares the IMP-8 magnetic field observations from the middle
tail (around (-36,-3,10) RE in the northern lobe) with the simulation results. The
lobe magnetic field is a good indicator for flux and energy storage in the tail.
Although the results agree qualitatively, there are significant quantitative differ-
ences. First, the loading is delayed in the simulation, and second, it is weaker
than in the observed values. This indicates that there are (despite other corre-
lations that look good) still significant discrepancies in the tail dynamics during
the growth phase, similar to the ones observed in the growth phase electrojets.
On the other hand, the unloading looks strikingly similar, except for a small
time delay in the simulation.

Figure 9a shows the comparison with Geotail data. Geotail was also located
in the middle tail ((-25,-8,-3) RE in GSE coordinates) but close to, or in the
plasma sheet. Since, whenever a spacecraft is close to a discontinuity or a sharp
gradient, even a small displacement of the spacecraft can cause large changes
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Fig. 7. (a) Wind interplanetary magnetic field (IMF) and solar wind data from (73,-
18,8) RE GSE on November 24, 1996. From top to bottom: the magnetic field com-
ponents Bx, By, and Bz; the total magnetic field (all in nT, GSE); the flow velocity
components Vx, Vy, and Vz (in km s−1, GSE); the number density (in cm−3); and the
temperature (in eV). (b) Ground magnetometer traces from the International Moni-
tor for Auroral Geomagnetic Effects (IMAGE) magnetometer chain on November 24,
1996 (thick dotted lines), and the comparison with the model result (thin solid line).
Shown is the north-south (X) component in units of nT. The stations are Longyear-
byen (LYR), Hornsund (HOR), Bear Island (BJN), Andenes (AND), Sørøya (SOR),
Tromsø (TRO), Kilpisjärvi (KIL), Masi (MAS), Kevo (KEV), Kiruna (KIR), Muonio
(MUO), Sodankylä (SOD), Pello (PEL), Lovozero (LOZ), Oulujärvi (OUJ), Hopen
Island (HOP), Nurmijärvi (NUR)

in the observed values, we bracket the observations by taking time series from
the simulation at ±2RE from Geotail’s actual position to take this effect into
account. Clearly, the simulation shows key observations, such as the earthward-
tailward reversal of the flow and the sign reversal of Bz at substorm onset, the
pressure and temperature peaks around onset, and the density dropout just after
onset. The simulation results are often not more different from the observations
than the differences in the measurements from the two plasma analyzers.

Figure 9b shows how the substorm evolution depends on parameters in the
model. Specifically, we have varied the electron precipitation parameters (affect-
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Fig. 8. (A) (a,b) Time series of the magnetic field By and Bz components in the
magnetosheath at the subsolar magnetopause, (c) the modeled AL index, (d) the polar
cap magnetic flux from the model (solid line) and from Polar Visible Imaging System
(VIS) estimates (dotted line), (e) the rate of change of the polar cap flux as estimated
from the model, (f) the cross polar cap potential from the model, and (g) the magnetic
field elevation angle at GOES 8 from the model (solid line) and from GOES 8 (dotted
line). (B) IMP 8 magnetic field data (dotted lines) and model results (solid lines) on
November 24, 1996. GSE coordinates: (a) Bx, (b) By, (c) Bz, and (d) the total field.
The two vertical lines mark the onset of the tail field reduction in the data and in the
model, respectively

ing the ionospheric conductances) and parameters in the anomalous resistivity
calculation. Clearly, the substorm evolution is very sensitive to these parame-
ters. Only for specific combinations does a substorm develop. If the parameters
are such that no substorm develops the magnetosphere enters into an enhanced
convection mode during which very little energy is stored in the tail, but instead
the energy is dissipated by enhanced reconnection in the mid tail. It is at this
point not clear whether there is a universal set of parameters that would cause a
substorm every time a substorm should occur. Thus, the parameter dependence
is somewhat frustrating because it limits the model’s predictive capabilities. On
the flip side, however, it offers the opportunity to learn more about the substorm
physics. Clearly, a certain amount of ionospheric field line tying is required to let
a substorm occur. At the same time, intrinsic properties of the tail are also con-
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Fig. 9. (a) Geotail magnetic field and plasma data and comparison with the model
results, on November 24, 1996. The dotted lines are magnetic field and plasma data from
the Magnetic Field Experiment (MGF) and Low Energy Particle (LEP) experiment,
respectively. Data represented with open circles are from the Comprehensive Plasma
Instrumentation (CPI) instrument. Model results at the nominal Geotail position are
drawn with a heavy solid line. The shaded area is bounded by time series taken from
the model at locations that are 2 RE above and below Geotail, respectively. (b)
Comparison of IMAGE ground magnetometer recordings on November 24, 1996, with
the results from three different simulation runs that did not produce a substorm (see
text for details). The format of this figure is the same as that of Fig. 7b

trolling factors, in particular the onset of dissipation. Many more detailed case
studies and theoretical investigation will be necessary to firmly establish these
relationships. Note, that these results are not in contradiction with results from
the recent “GEM reconnection challenge” [11,12,36,52,74,57], because we use a
strongly nonlinear anomalous resistivity term and tail reconnection is indeed
fast. Of course, the results from the “GEM reconnection challenge” offer new
approaches to modeling the anomalous diffusion terms which will be pursued in
the future.

The comparison of the results with data and the finding that the simulation
captures the essence of the substorm development allows further investigation
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Fig. 10. The magnetic field Bz component, the velocity Vx component, and the plasma
temperature in a plane at ZGSE=-3.3 RE , at four different times: (a) 2200 UT, (b)
2215 UT, (c) 2245 UT, and (d) 2300 UT. Contours are drawn at the zero level for Vx,
at 12 nT intervals for Bz, and at 1 and 10 keV for the temperature, respectively. The
black dot marks Geotail’s position.

of the processes in the tail that go beyond the view of in situ spacecraft ob-
servations. Figure 10 shows 2d cuts in a plane at ZGSE=-3.3 RE which lies
approximately in the center of the plasma sheet at 4 different times for the Bz

component of the magnetic field, the Vx component of the velocity, and the
plasma temperature. This figure demonstrates that the middle tail, where the
energy conversion occurs, is highly structured. Unlike shown in many cartoons
of tail reconnection, there is more than one x-line, the existing x-lines are not
simply oriented in the y-direction, and the reconnection rate varies along any
given x-line. Comparing Bz with Vx shows that channels of earthward flows
transport flux earthward and lead to the dipolarization of the near-Earth field,
however, in a strongly local time dependent manner. The simulation even cap-
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tures the phenomenon of substorm particle injection. The plasma temperature
near geosynchronous orbit rises significantly at substorm expansion onset. This
shows that “particle injection” is, for the most part, earthward transport and
adiabatic heating of plasma, because nothing more is included in the MHD de-
scription. Of course, kinetic features, like energy dispersion, are beyond the MHD
description.

We should reiterate the fact that the value of this study lies in the combi-
nation of simulation with data analysis. The simulation itself would be hardly
convincing, in particular, because it depends on the correct choice of parameters.
On the other hand, the data itself are too sparse and allow for many different
interpretations. Taken together, however, a clearer picture emerges that lends
strong support to the near-Earth neutral line model of substorms with some
modifications, such as fragmented x-lines and flow channels. This does not quite
solve the “substorm problem” yet, because substorms come in many different fla-
vors and because the simulation cannot yet capture all of the details, for example
auroral arcs. However, with studies like these more progress can be made.

The simulation also shows why data analysis has not yet provided a clear
picture (not even a penomenological one) of the substorm process and why in-
telligent people might come to quite different conclusions by looking at essen-
tially the same data sets. Figures 9a and 10 show that even a small variation
in Geotail’s position leads to significantly different observations. One might be
tempted to conclude that studies using observations from a single (or a few)
spacecraft are doomed to fail to solve the problem because they can never derive
suitable synoptic maps and at best murky statistics. Thus, a convincing solution
may only be found with constellations of 10’s to 100’s of spacecraft, along with
modeling and data assimilation [2,63]. More details about this substorm and the
simulation can be found in [66,67].

4.2 Geomagnetic Storms

While substorms are manifestations of geomagnetic activity that is caused by
relatively brief periods (∼1h) of southward IMF, storms are caused by much
longer (several hours to days) and stronger (negative IMF Bz of several 10’s of
nT) periods of southward IMF. In addition, the southward IMF of storms is often
accompanied by high solar wind speed (sometimes over 1000 km s−1) and high
solar wind plasma density (several 10’s cm−3). Thus, storms exert much more
stress on the magnetosphere and thus on any model as well. Storms are not only
interesting because they cause extreme magnetospheric conditions, but also be-
cause they can cause severe space weather effects that are potentially harmful to
our societal infrastructure (foremost geosynchronous and LEO satellites, power
grids, and pipelines). Thus, the ability to forecast storm effects has recently be-
come a topic of strong interest. Of course, global modeling in an operational
setting would be one key element of space weather forecasting.

In the following we present a comparison of our model predictions with several
key data sets for the Bastille Day storm (July 14/15, 2000), which was one of the
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Fig. 11. Solar wind and IMF measurements for July 15, 2000. From top to bottom:
The IMF By and Bz components, the solar wind velocity, the solar wind number
density, the solar wind magnetosonic Mach number, and the plasma β (ratio of plasma
pressure to magnetic field pressure). The shaded region is the CME sheath, which
begins at the interplanetary shock and ends with the CME proper, which is defined
here as the magnetic flux rope

strongest storms so far of this solar cycle [70]. We concentrate on space weather
effects, that is, magnetospheric compression and ground magnetic perturbations.

Figure 11 shows the solar wind and IMF parameters for this event. The main
characteristics are an interplanetary shock at ∼1430 UT, followed by the CME
sheath until ∼1920 UT, followed by the CME proper, which lasts for almost 1
day. The solar wind speed reaches values of ∼1100 km s−1, the density 20 cm−3,
and the IMF Bz −60 nT (at ∼2000 UT, the peak of the storm.)

Figure 12 shows the comparison of the magnetic field Bz component with
measurements from three GOES geosynchronous satellites. First, compared to
a typical quiet day (July 13, 2000), the field at these satellites is extremely dis-
torted. In particular, the field measurements show several episodes in which Bz

becomes negative, indicating that the spacecraft have crossed the magnetopause
and entered the magnetosheath or even the solar wind. The simulation results
compare extremely well with the observations, predicting all but a few of the
magnetopause crossings.

Figure 13 shows the extreme compression and distortion of the magneto-
sphere at the peak of the storm. The magnetopause comes at this time as close
as 4.9 RE to Earth. At this time the dynamic pressure of the solar wind is 12
times as large as its average value, and the IMF Bz value is nearly −60 nT.
The former causes a compression of the magnetosphere, while the latter causes
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flux erosion. Neither of these effects alone could bring the magnetopause this far
in, but the combined effect does. Because storm effects of this magnitude are
extremely rare (at most a few per solar cycle) events like this one put empirical
models out of their valid parameter range, thus prediction is more reliable with
numerical models.

The peculiar shape of the dayside magnetosphere has also consequences for
the cross polar cap potential (CPCP). Simple prediction of the CPCP by re-
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Fig. 14. The north-south ground magnetic perturbation (left column, the scale is in
nT) and the corresponding time derivative (right column, the scale is in nT/s) for 8
ground magnetometer stations. The station names are indicated at the left of each
panel, and the stations are ordered from north to south, although at different magnetic
local times. Specifically, these stations are, with their abbreviation, geographic longi-
tude and latitude given in parentheses: Resolute Bay (RES, 74.7◦, 265.2◦), Cambridge
Bay (CBB, 69.1◦, 255.0◦), Bear Island (BJN, 74.52◦, 19.02◦), Poste-d.l.-Baleine (PBQ,
55.3◦, 282.3◦), Faroes (FAsam, 62.1◦, 353.0◦), Hankasalmi (HAsam, 62.3◦, 26.7◦), Ot-
tawa (OTT, 45.4◦, 284.5◦), and Borok (BOsam, 58.0◦, 38.3◦). The black lines show
the data and the red lines show the simulation results.

gression formulas [71,44] yield CPCP values of the order of 1000 kV. However,
the model and measurements show that the CPCP reaches only ∼300 kV, thus,
the CPCP saturates at this level. Figure 13 indicates indicates that because of
the strong magnetopause erosion flux piles up in the lobes and the lobe shoul-
ders bulge out. This causes the reconnection region to be partially shielded from
the solar wind and the compressed IMF in the magnetosheath. Because of this
shielding less magnetic energy can be transported to the reconnection site, lead-
ing to an overall reduction in the reconnection rate, and thus magnetospheric
and ionospheric convection.

Figure 14 shows the comparison of ground magnetometer recordings with
predictions from the simulation. The quality of the prediction varies significantly
from station to station but is generally better at high and sub-auroral latitudes,
and worst in the nightside auroral zone. Comparing the fluctuations, i.e., the time
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Fig. 15. (a-c) shows the averaged power spectral density (PSD, in units of nT2Hz−1)
of the north-south perturbation for ground magnetometer stations in the sub-auroral
zone (a), the auroral zone (b), and the polar cap (c). The solid line is for the data, the
solid line with dots represents the model result. The lower panel (d-f) shows the average
PSD of the time derivative of the north-south perturbation (in units of nT2s−2Hz−1)
for the same set of stations

derivative of the magnetic field (which are the cause of induced electric fields in
power lines or pipelines) shows a similar picture. Figure 15 combines the spectral
power of about 40 ground magnetometers in different latitude zones. Except for
the auroral zone, the predictions of the power spectrum of the fluctuations is
surprisingly good in the 0-3 mHz range. However, as said, this is not necessarily
true for individual stations. In other words, the model predictions of the total
power flux are more or less accurate; however, the model cannot yet predict the
correct locations of large wave power flux. This event is discussed in more detail
in [70].

4.3 Lessons from Data Comparisons

In the preceding sections we have shown that our model can reproduce a number
of characteristic phenomena of substorms and storms. In particular, the model
shows the magnetic energy loading in the tail during the substorm growth phase,
the dipolarization of the near-Earth magnetic field in the expansion phase, the
concurrent injection of energetic plasma into the inner magnetosphere, the for-
mation of new x-lines, the formation and ejection of a plasmoid, and the inten-
sification of the westward electrojet at expansion phase onset. Although these
phenomena have all been observed in the past, no comprehensive (and univer-
sally accepted) model exists yet that puts these phenomena into context and
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provides a satisfactory explanation. The fact that our model produces these
phenomena, and the fact that these are all related to the onset of reconnection
in the near-Earth tail at ∼20 RE lends support to the Near Earth Neutral Line
(NENL) model [53,6]. However, we also find that the tail dynamics is much more
complex compared to the NENL prediction. In particular, the substorm onset is
characterized by multiple x-lines that form at different local times and distances,
and which produce rapid earthward and tailward plasma flows akin to Bursty
Bulk Flows (BBFs) [1,4,3]. This fragmentation of the tail plasma sheet makes
it all but impossible to solve the “2 minute problem,” that is, the exact onset
location and cause of the substorm expansion phase onset. We should also not
forget that the model can not at present produce the brightening of the equator
most auroral arc at onset, which is often cited as the first distinct substorm
signature [47,46,27].

As far as magnetic storms are concerned, the study presented here should
be viewed as a first step to model the magnetosphere under extreme solar wind
conditions. This aspect is not only of particular importance for space weather,
but also shows that the magnetosphere can exhibit a very particular behavior
during storms. For example, both the simulation and the data show that the
polar cap potential saturates when the driving solar wind ingredient, that is, the
interplanetary electric field Eip, reaches very high (>∼20 mV/m) values. For
more benign conditions there is a more or less linear relationship between Eip

and the potential [71,15] which apparently loses its validity for the strong solar
wind driving during storms. This result leads to a host of other questions, for
example, if similar nonlinearities also exist for the energy input and dissipation
in the magnetosphere. Global models face here a severe limitation because the
most characteristic signature of a geomagnetic storm is the ring current which
can not be treated adequately. Ring current formation is caused by the trapping
of energetic plasma (>∼10 keV ions) in the inner part (2.5 – 8 RE ) of the
magnetosphere by gradient and curvature drifts. The MHD formalism does not
include these drifts; they are, in fact a consequence of non-Maxwellian distribu-
tions [34,35]. Thus, until global models are coupled with appropriate models of
the inner magnetosphere (see below) such studies will be difficult.

5 Future Directions

The development of global geospace models has by no means come to an end.
There are a large number of regions and processes that are not currently covered
or that need improvement. At present some model developments appear most
promising:

• The inclusion of the particle drift physics in the inner magnetosphere in the
form of sub-models similar to the Rice Convection Model (RCM).

• Adaptive grid solvers that allow better resolution of plasma and field bound-
aries along with reduced numerical diffusion.

• Better magnetosphere-ionosphere coupling, in particular a more self-consistent
model for electron precipitation.
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• A multi-fluid formalism to study the ionospheric outflow and the role of iono-
spheric plasma in the magnetosphere. This includes the need for an outflow
specification model or a self-consistent outflow model, none of which exists
yet.

• Data assimilation from multiple spacecraft observations.

6 Conclusions

Global modeling has been proven an extremely powerful tool to study the solar-
terrestrial plasma interaction. It’s importance will likely increase in the future
as models become ever more sophisticated and as computational power becomes
ever more abundant and cheaper. We are now entering an era where global mod-
eling does no longer depend on expensive supercomputers, but where affordable
desktop equipment (Beowulf PC clusters) is becoming sufficient for meaningful
global modeling. This should foster the more widespread use of global models,
not only by the model developers themselves, but also by others in the scientific
community.
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Abstract. The first part of this paper reviews some physics issues representing major
computational challenges for global MHD models of the space environment. These is-
sues include: (i) mathematical formulation and discretization of the governing equations
that ensure the proper jump conditions and propagation speeds, (ii) regions of relativis-
tic Alfvén speed, (iii) regions dominated by strong intrinsic planetary magnetic field
with strong gradients, and (iv) the religiously debated issue of controling the divergence
of the magnetic field. The second part of the paper concentrates to modern solution
methods that have been developed by the aerodynamics, applied mathematics and DoE
communities. Such methods have recently begun to be implemented in space-physics
codes, which solve the governing equations for a compressible magnetized plasma. These
techniques include high-resolution upwind schemes, block-based solution-adaptive grids
and domain decomposition for parallelization. While some of these techniques carry
over relatively straightforwardly to space physics, space physics simulations pose some
new challenges. We give a brief review of the state-of-the-art in modern space-physics
codes. Finally, we describe the space physics MHD code developed at the University
of Michigan and its recent coupling to a thermosphere-ionosphere and inner magneto-
sphere model.

1 Introduction

Global computational models based on first principles represent a very impor-
tant component of efforts to understand the intricate processes coupling the Sun
to the geospace environment. The hope for such models is that they will eventu-
ally fill the gaps left by measurements, extending the spatially and temporarily
limited observational database into a self-consistent global understanding of our
space environment.

Presently, and in the foreseeable future, magnetohydrodynamic (MHD) mod-
els are the only models that can span the enormous distances present in the
magnetosphere. However, it should not be forgotten that even generalized MHD
equations are only a relatively low-order approximation to more complete physics;
they provide only a simplified description of natural phenomena in space plas-
mas.
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2 Non-relativistic Magnetohydrodynamics

The governing equations for an ideal, non-relativistic, compressible plasma may
be written in a number of different forms. While the different forms of the MHD
equations describe the same physics at the differential equation level, there are
important practical differences when one solves discretized forms of the various
formulations.

According to the Lax-Wendroff theorem [37] only conservative schemes can
be expected to get the correct jump conditions and propagation speed for a
discontinuous solution. This fact is much less emphasized in the global magne-
tosphere simulation literature than the more controversial divergence of B issue.
In some test problems the non-conservative discretization of the MHD equa-
tions can lead to significant errors, which do not diminish with increased grid
resolution.

2.1 Primitive Variable Form

In primitive variables, the governing equations of ideal magnetohydrodynamics,
which represent a combination of the Euler equations of gasdynamics and the
Maxwell equations of electromagnetics, may be written as:

∂ρ
∂t + u · ∇ρ+ ρ∇ · u = 0 (1a)

ρ∂u
∂t + ρu · ∇u +∇p− 1

μ0
j×B = 0 (1b)

∂B
∂t +∇×E = 0 (1c)

∂p
∂t + u · ∇p+ γp∇ · u = 0 (1d)

where μ0 and γ represent the magnetic permeability of vacuum and the specific
heat ratio of the gas. In addition, the current density, j, and the electric field
vector, E, are related to the magnetic field B by Ampère’s law and Ohm’s law:

j = 1
μ0
∇×B (2a)

E = −u×B (2b)

2.2 Gasdynamic Conservation Form

For one popular class of schemes, the equations are written in a form in which the
gasdynamic terms are put in divergence form, and the electromagnetic terms in
the momentum and energy equations are treated as source terms. This gives:

∂ρ
∂t +∇ · (ρu) = 0 (3a)

∂(ρu)
∂t +∇ · (ρuu + pI) = 1

μ0
j×B (3b)

∂B
∂t +∇×E = 0 (3c)

∂Egd

∂t +∇ · [u (Egd + p)] = 1
μ0

j ·E (3d)
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where I is the identity matrix and Egd is the gasdynamic total energy, given by

Egd =
1
2
ρ u2 +

1
γ − 1

p (4)

This formulation is used in several popular magnetosphere codes [20,49], as
well as in the publicly available Zeus code [63].

2.3 Fully Conservative Form

The fully conservative form of the equations is

∂U
∂t

+ (∇ · F)T = 0 , (5)

where U is the vector of conserved quantities and F is a flux diad,

U =

⎛⎜⎜⎝
ρ
ρu
B

Emhd

⎞⎟⎟⎠ (6a)

F =

⎛⎜⎜⎜⎜⎝
ρu

ρuu +
(
p+ 1

2μ0
B2

)
I− 1

μ0
BB

uB−Bu

u
(
Emhd + p+ 1

2μ0
B2

)
− 1

μ0
(u ·B)B

⎞⎟⎟⎟⎟⎠
T

(6b)

where Emhd is the magnetohydrodynamic energy, given by

Emhd = Egd +
1

2μ0
B2 (7)

2.4 Symmetrizable Formulation

Symmetrizable systems of conservation laws have been studied by Godunov [21]
and Harten [30], among others. One property of the symmetrizable form of a
system of conservation laws is that an added conservation law

∂ (ρs)
∂t

+
∂ (ρ s ux)
∂x

+
∂ (ρ s uy)
∂y

+
∂ (ρ s uz)
∂z

= 0

for the entropy s can be derived by a linear combintion of the system of equations.
For the ideal MHD equations, as for the gasdynamic equations, the entropy is
s = log(p/ργ). Another property is that the system is Galilean invariant; all
waves in the system propagate at speeds u ± cw (for MHD, the possible values
of cw are the Alfvén, magnetofast and magentoslow speeds). Neither of these
properties holds for the fully conservative form of the MHD equations.
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Godunov showed that the fully conservative form of the MHD equations
(eq. 5) is not symmetrizable [21]. The symmetrizable form may be written as

∂U
∂t

+ (∇ · F)T = Q , (8)

where

Q = −∇ ·B

⎛⎜⎜⎝
0

1
μ0

B
u

1
μ0

u ·B

⎞⎟⎟⎠ (9)

Vinokur separately showed that eq. (8) can be derived starting from the primitive
form, if no stipulation is made about ∇·B in the derivation. Powell showed that
this symmetrizable form can be used to derive a Roe-type approximate Riemann
solver for solving the MHD equations in multiple dimensions [45].

The MHD eigensystem arising from eq. (5) or eq. (8) leads to eight eigen-
value/eigenvector pairs. The eigenvalues and associated eigenvectors correspond
to an entropy wave, two Alfvén waves, two magnetofast waves, two magne-
toslow waves, and an eighth eigenvalue/eigenvector pair that depends on which
form of the equations is being solved. This last wave (which describes the jump
in the normal component of the magnetic field at discontinuities) has a zero
eigenvalue in the fully conservative case, and an eigenvalue equal to the normal
component of the velocity, un, in the symmetrizable case. The expressions for
the eigenvectors, and the scaling of the eigenvectors, are more intricate than in
gasdynamics [59].

We note that while eq.(5) is fully conservative, the symmetrizable formulation
(given by eq. 8) is formally not fully conservative. Terms of order ∇ · B are
added to what would otherwise be a divergence form. The danger of this is
that shock jump conditions may not be correctly met, unless the added terms
are small, and/or they alternate in sign in such a way that the errors are local,
and in a global sense cancel in some way with neighboring terms. This downside,
however, has to be weighed against the alternative; a system (i.e., the one without
the source term) that, while conservative, is not Gallilean invariant, has a zero
eigenvalue in the Jacobian matrix, and is not symmetrizable.

3 Semi-relativistic Plasmas

While the solar-wind speed remains non-relativistic in the solar system, the
intrinsic magnetic fields of several planets in the solar system are high enough,
and the density of the solar wind low enough, that the Alfvén speed,

VA =

√
B2

μ0ρ
(10)

can reach appreciable fractions of the speed of light. In the case of Jupiter, the
Alfvén speed in the vicinity of the poles is of order ten! Even Earth has a strong



AMR for Global MHD Simulations 251

enough intrinsic magnetic field that the Alfvén speed reaches twice the speed of
light in Earth’s near-auroral regions.

3.1 Limiting the Alfvén Speed

For these regions, solving the non-relativistic ideal MHD equations does not make
sense. Having waves in the system propagating faster than the speed of light,
besides being non-physical, causes a number of numerical difficulties. However,
solving the fully relativistic MHD equations is overkill. What is called for is
a semi-relativistic form of the equations, in which the flow speed and acoustic
speed are non-relativistic, but the Alfvén speed can be relativistic. A derivation
of these semi-relativistic equations from the fully relativistic equations is given
in [25]; the final result is presented here.

The semi-relativistic ideal MHD equations are of the form

∂Usr

∂t
+ (∇ · Fsr)

T = 0 (11)

where the state vector, Usr, and the flux diad, Fsr, are

Usr =

⎛⎜⎜⎝
ρ

ρu + 1
c2 SA

B
1
2ρu

2 + 1
γ−1p+ eA

⎞⎟⎟⎠ (12a)

Fsr =

⎛⎜⎜⎜⎝
ρu

ρuu + pI + PA

uB−Bu(
1
2ρu

2 + γ
γ−1p

)
u + SA

⎞⎟⎟⎟⎠
T

(12b)

In the above,

SA = 1
μ0

(E×B) (13a)

eA = 1
2μ0

(
B2 + 1

c2E
2
)

(13b)

PA = eAI− 1
μ0

BB− 1
μ0c2 EE (13c)

are the Poynting vector, the electromagnetic energy density, and the electromag-
netic pressure tensor, respectively. The electric field E is related to the magnetic
field B by Ohm’s law, (eq. 2b).

3.2 Lowering the Speed of Light

This new system of equations has wave speeds that are limited by the speed of
light; for strong magnetic fields, the modified Alfvén speed (and the modified
magnetofast speed) asymptote to c. The modified magnetoslow speed asymptotes
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to a, the acoustic speed. This property offers the possibility of a rather tricky
convergence-acceleration technique for explicit time-stepping schemes, first sug-
gested by Boris [11]; the wave speeds can be lowered, and the stable time-step
thereby raised, by artificially lowering the value taken for the speed of light. This
method is known as the “Boris correction.”

The equations in Sect. 3.1 are valid in physical situations in which VA > c. A
slight modification yields a set of equations, the steady-state solutions of which
are independent of the value taken for the speed of light. Defining the true value
of the speed of light to be c0, to distinguish it from the artificially lowered speed
of light, c, the equations are:

∂Usr

∂t
+ (∇ · Fsr)

T = Qc0 (14)

where the state vector, Usr, and the flux diad, Fsr, are as defined above, and
the new source term in the momentum equation is

Qc0 =
1
μ0

(
1
c20
− 1
c2

)
E∇ ·E (15)

An implementation of the semi-relativistic equations has been made in the
BATSRUS code developed at the University of Michigan [46,25].

4 Splitting the Magnetic Field

For problems in which strong externally imposed magnetic fields are present,
accuracy can be increased by solving for the deviation of the magnetic field from
this prescribed component. For instance, in magnetosphere-type simulations a
strong dipole-like magnetic field dominates the solution near the body. Solving
for the deviation B1 from the embedded field B0 is inherently more accurate
than solving for the full magnetic field vector B = B0 + B1. This approach was
first suggested by Ogino and Walker [42], applied to Godunov-type schemes by
Tanaka [64] and later employed by our group [46]. Recently we generalized it to
semi-relativistic MHD [25].

The full magnetic field vector B can be written as

B = B0 + B1 (16)

where B0 is given analytically and thus ∇·B0 = 0, while B1 is calculated by the
numerical scheme. Note that B1 is not necessarily small relative to B0. We also
introduce the non-relativistic current density j0 = (1/μ0)∇ ×B0. The splitting
is most important when the equations are solved in a (near) conservation form,
since the total energy density can be completely dominated by the magnetic
energy B2

0/(2μ0). When the pressure is calculated from the total energy density,
it can easily become negative, as we take differences of two huge numbers to
obtain a small one. This problem can be mitigated by rewriting the energy
equation in terms of the modified total energy density

e1 = Egd +
1

2μ0

(
B2

1 +
1
c2
E2

)
(17)
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Note that the electric energy still contains contribution from B0, but that is
reduced by the factor (1/c2). With these definitions the conservation form of the
semi-relativistic MHD equations (eq. 11) can be rewritten as

∂ρ
∂t +∇ · (ρu) = 0 (18a)

∂
∂t

(
ρu + 1

c2 SA

)
+∇ · [ρuu + Ip+ PA,1] = j0 ×B0 (18b)

∂B1
∂t +∇ · [uB−Bu] = −∂B0

∂t (18c)

∂e1
∂t +∇ ·

[
u
(

1
2ρu

2 + γp
γ−1

)
+ 1

μ0
E×B1

]
= −B1 · ∂B0

∂t + E · j0 (18d)

where

PA,1 =
1
μ0

[
I
(

1
2
B2

1 + B1 ·B0 +
1

2c2
E2

)
−B1B1 −B1B0 −B0B1

]
(19)

The splitting did not modify the continuity equation. In the momentum equation
the dominant B2

0 I and B0B0 terms are moved into the source term j0×B0, which
can be calculated analytically, and it is identically zero if B0 is a force free field.
The induction equation is modified in a trivial way, by moving the time derivative
of B0 to the right hand side. Again, this term can be calculated analytically, and
in the case of a stationary B0 field, it vanishes. The split energy equation is
obtained after quite some algebra. Most of the dominant B2

0 and E×B0 terms
are eliminated, but the remaining source terms B1 · ∂B0/∂t and E · j0 contain
the numerically calculated B1 and u quantities. In case of a potential (j0 = 0)
and/or stationary B0 field one or both energy source terms can be eliminated.

One may add the source terms involving ∇ · B to the split momentum, in-
duction and/or energy equations (18b)−(18d) if the numerical scheme does not
keep ∇ · B exactly zero. Of course, ∇ · B = ∇ · B1, since the analytic B0 field
must be divergence free by definition.

5 Solution Techniques

5.1 Finite-Volume Scheme

The MHD equations are well suited for finite volume methods when the governing
equations are integrated over a computational cell i, yielding

dUi

dt
= − 1

Vi

∑
faces

F · n̂A− Qi

Vi

∑
faces

B · n̂A , (20)

where Vi is the volume of cell i, A is the surface area of the faces forming the
computational cell, n̂ is the unit vector normal to the cell faces, Ui is the cell-
averaged conserved solution vector, and Qi is given by

Qi = −

⎡⎢⎢⎣
0

1
μ0

Bi

ui
1

μ0
ui ·Bi

⎤⎥⎥⎦ . (21)
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The numerical face fluxes, F·n̂, are defined in terms of the left and right interface
solution states, UL and UR, as follows

F · n̂ = F (UL,UR, n̂) , (22)

where UL and UR are the state vectors at the left and right sides of the interface.

5.2 TVD-MUSCL

Because the MHD equations are a system of hyperbolic conservation laws, many
of the techniques that have been developed for the Euler equations can be ap-
plied relatively straightforwardly. In particular, the high-resolution finite-volume
approach of van Leer [69] (i.e. approximate Riemann solver + limited inter-
polation scheme + multi-stage time-stepping scheme) is perfectly valid. The
Rusanov/Lax-Friedrichs approximate Riemann solver can be applied directly;
no knowledge of the eigensystem of the MHD equations is required other than
the fastest wave speed in the system. A Roe-type scheme [58] can be constructed
for non-relativistic MHD, but requires more work, because of the complexity of
the eigensystem. In addition, an HLLE-type Riemann solver has been derived
by Linde [39]; it is less dissipative than the Rusanov/Lax-Friedrichs scheme, but
less computationally intensive than the Roe scheme. Whichever approximate
Riemann solver is chosen to serve as the flux function, standard interpolation
schemes and limiters can be used to construct a finite-volume scheme.

5.3 Pressure Positivity

One added difficulty in solving the MHD equations is that the MHD energy has
three components: internal, magnetic and kinetic. Thus, as in gasdynamics, flows
with substantially more kinetic energy than internal energy can lead to positivity
problems when computing the pressure. Also, in contrast to gasdynamics, regions
in which the magnetic field is large can yield similar problems. Conservative and
positive HLLE-type schemes for MHD have been described by Janhunen [32].
Another alternative, due to Balsara and Spicer [2], is to use a hybrid scheme:
both the conservative energy equation and the entropy equations are solved.
Close to shock waves the energy equation is used to obtain the correct weak
solution, at other places the more robust and positive entropy equation can be
used. A variant of this technique has been implemented in our code.

6 Controlling ∇ · B

Another way in which the numerical solution of the MHD equations differs from
that of the gasdynamic equations is the constraint that ∇ · B = 0. Enforcing
this constraint numerically, particularly in shock-capturing codes, can be done
in a number of ways, but each way has its particular strengths and weaknesses.
Only a brief overview is given below; each of the schemes discussed below is
explained more fully in the references cited, and Tóth has published a numerical
comparison of many of the approaches for a suite of test cases [66].
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6.1 Projection Scheme

Brackbill and Barnes [12] proposed using a Hodge-type projection to the mag-
netic field. This approach leads to a Poisson equation that must be solved each
time the projection takes place:

∇2φ = ∇ ·B (23a)

Bprojected = B−∇φ (23b)

The resulting projected magnetic field is divergence-free on a particular numer-
ical stencil, to the level of error of the solution of the Poisson equation. While
it is not immediately obvious that the use of the projection scheme in conjunc-
tion with the fully conservative form of the MHD equations gives the correct
weak solutions, Tóth has proven this to be the case [66]. The projection scheme
has several advantages, including the ability to use standard software libraries
for the Poisson solution, its relatively straightforward extension to general un-
structured grids, and its robustness. It does, however, require solution of an
elliptic equation at each projection step; this can be expensive, particularly on
distributed-memory machines.

6.2 8-Wave Scheme

Powell [45,46] first proposed an approach based on the symmetrizable form of
the MHD equations (eq. 8). In this approach, the source term on the right-
hand side of eq. (8) is computed at each time step, and included in the update
scheme. Discretizing this form of the equations leads to enhanced stability and
accuracy, however, there is no stencil on which the divergence is identically zero.
In most regions of the flow, the divergence source term is small. However, near
discontinuities, it is not guaranteed to be small. In essence, the inclusion of the
source term changes what would be a zero eigenvalue of the system to one whose
value is un, the component of velocity normal to the interface through which the
flux is computed. The scheme is typically referred to as the eight-wave scheme;
the eighth wave corresponds to propagation of jumps in the normal component
of the magnetic field.

The eight-wave scheme can be thought of as a hyperbolic or advective ap-
proach to controlling ∇ · B; symmetrizable form of the equations, eq. (8), are
consistent with the passive advection of ∇·B/ρ. The eight-wave scheme is com-
putationally inexpensive, easy to add to an existing code, and quite robust.
However, if there are regions in the flow in which the ∇ ·B source term (eq. 9)
is large, the conservation errors can create problems.

6.3 Constrained Transport

Several approaches have been developed that have combined a Riemann-solver-
based scheme with constrained-transport approach. The constrained-transport
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approach of Evans and Hawley [19] treated the MHD equations in the gasdy-
namics/electromagnetic-split form of eq. (3a) through (3d). The grid used was a
staggered one, and the ∇ ·B = 0 constraint was met identically, on a particular
numerical stencil.

Dai and Woodward [13] and Balsara and Spicer [1] modified the constrained-
transport approach by coupling a Riemann-solver-based scheme for the conser-
vative form of the MHD equations (eq. 5), with a constrained-transport approach
for the representation of the magnetic field. In their formulations, this required
two representations of the magnetic field: a cell-centered one for the Godunov
scheme, and a face-centered one to enforce the ∇ · B = 0 condition. Tóth [66]
subsequently showed that these formulations could be recast in terms of a single
cell-centered representation for the magnetic field, through a modification to the
flux function used.

Advantages of the conservative constrained-transport schemes include the
fact that they are strictly conservative and that they meet the ∇ · B = 0 con-
straint to machine accuracy, on a particular stencil. The primary disadvantage of
the constrained transport technique is the difficulty in extending them to general
grids. Tóth and Roe [67] and Balsara [3] made some progress on this front; they
developed divergence-preserving prolongation and restriction operators, allowing
the use of conservative constrained-transport schemes on h-refined meshes. De
Sterck generalized the constrained transport method to unstructured grids [15].

However, it can also be shown that the conservative constrained-transport
techniques lose their ∇ · B-preserving properties if different cells are advanced
at different physical time rates [68]. This rules out the use of local time-stepping
(see Sect. 9.1). Thus, while for unsteady calculations the cost of the conserva-
tive constrained-transport approach is comparable to the eight-wave scheme, for
steady-state calculations (where one would typically use local time-stepping),
the cost can be prohibitive.

6.4 Diffusive Control

Some of the most recent work on the ∇ · B = 0 constraint has been related
to modifying the eight-wave approach by adding a source term proportional to
the gradient of ∇ ·B so that the the divergence satisfies an advection-diffusion
equation, rather than a pure advection equation. Similar schemes have been used
for the Maxwell equations [41]. This technique, referred to as diffusive control of
∇ ·B, has the same advantages and disadvantages as the eight-wave approach.
It is not strictly conservative, but appears to keep the level of ∇ · B lower
than the eight-wave approach does. In other recent work by Dedner et al. [14],
a generalized Lagrange-multiplier method has been proposed, incorporating the
projection approach, the eight-wave approach, and the diffusive-control approach
into a single framework. In addition, they also introduced a hyperbolic correction
of ∇ ·B errors.
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7 Block-Based AMR on Cartesian Grids

Adaptive mesh refinement techniques that automatically adapt the computa-
tional grid to the solution of the governing PDEs can be very effective in treating
problems with disparate length scales. Methods of this type avoid underresolv-
ing the solution in regions deemed of interest (e.g., high-gradient regions) and,
conversely, avoid overresolving the solution in other less interesting regions (low-
gradient regions), thereby saving orders of magnitude in computing resources for
many problems. For typical solar wind flows, length scales can range from tens
of kilometers in the near Earth region to the Earth-Sun distance (1.5 × 1011

m), and timescales can range from a few seconds near the Sun to the expansion
time of the solar wind from the Sun to the Earth (∼105 s). The use of AMR
is extremely beneficial and almost a virtual necessity for solving problems with
such disparate spatial and temporal scales.

7.1 Adaptive Blocks

Borrowing from previous work by Berger and coworkers [5,6,8,9,10] and Quirk
[47,48], and keeping in mind the desire for high performance on massively par-
allel computer architectures, a relatively simple yet effective block-based AMR
technique has been developed and is used in conjunction with the finite-volume
scheme described above. The method has some similarities with the block-based
approaches described by Quirk and Hanebutte [48] and Berger and Saltzman
[10]. Here the governing equations are integrated to obtain volume-averaged
solution quantities within rectangular Cartesian computational cells. The com-
putational cells are embedded in regular structured blocks of equal sized cells.
The blocks are geometrically self-similar with dimensions "̃x × "̃y × "̃z and con-
sist of Nx ×Ny ×Nz cells, where "̃x, "̃y, and "̃z are the nondimensional lengths
of the sides of the rectangular blocks and Nx, Ny, and Nz are even, but not
necessarily all equal, integers. Typically, blocks consisting of anywhere between
4× 4× 4 = 64 and 12× 12× 12 = 1728 cells are used (see Fig. 1). Solution data
associated with each block are stored in standard indexed array data structures.
It is therefore straightforward to obtain solution information from neighboring
cells within a block.

Computational grids are composed of many self-similar blocks. Although each
block within a grid has the same data storage requirements, blocks may be of
different sizes in terms of the volume of physical space that they occupy. Start-
ing with an initial mesh consisting of blocks of equal size (i.e., equal resolution),
adaptation is accomplished by the dividing and coarsening of appropriate so-
lution blocks. In regions requiring increased cell resolution, a “parent” block is
refined by dividing itself into eight “children” or “offspring.” Each of the eight
octants of a parent block becomes a new block having the same number of cells
as the parent and thereby doubling the cell resolution in the region of interest.
Conversely, in regions that are deemed overresolved, the refinement process is re-
versed, and eight children are coarsened and coalesced into a single parent block.
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Fig. 1. (left) Self-similar blocks used in parallel block-based AMR scheme. (right) Self-
similar blocks illustrating the double layer of ghost cells for both coarse and fine blocks.

In this way, the cell resolution is reduced by a factor of 2. Standard multigrid-
type restriction and prolongation operators are used to evaluate the solution on
all blocks created by the coarsening and division processes, respectively.

Two neighboring blocks, one of which has been refined and one of which
has not, are shown in Fig. 1. Any of the blocks shown in Fig. 1 can in turn be
refined, and so on, leading to successively finer blocks. In the present method,
mesh refinement is constrained such that the cell resolution changes by only a
factor of 2 between adjacent blocks and such that the minimum resolution is not
less than that of the initial mesh.

In order that the update scheme for a given iteration or time step can be
applied directly to all blocks in an independent manner, some additional solu-
tion information is shared between adjacent blocks having common interfaces.
This information is stored in an additional two layers of overlapping “ghost”
cells associated with each block as shown in Fig. 1. At interfaces between blocks
of equal resolution, these ghost cells are simply assigned the solution values as-
sociated with the appropriate interior cells of the adjacent blocks. At resolution
changes, restriction and prolongation operators, similar to those used in block
coarsening and division, are employed to evaluate the ghost cell solution values.
After each stage of the multistage time-stepping algorithm, ghost cell values are
reevaluated to reflect the updated solution values of neighboring blocks. With the
AMR approach, additional interblock communication is also required at inter-
faces with resolution changes to strictly enforce the flux conservation properties
of the finite-volume scheme [5,6,8]. In particular, the interface fluxes computed
on more refined blocks are used to correct the interface fluxes computed on
coarser neighboring blocks so as to ensure that the fluxes are conserved across
block interfaces.
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7.2 Data Structure

A hierarchical tree-like data structure with multiple “roots,” multiple “trees,”
and additional interconnects between the “leaves” of the trees is used to keep
track of mesh refinement and the connectivity between solution blocks. This
interconnected “forest” data structure is depicted in Fig. 2. The blocks of the
initial mesh are the roots of the forest, which are stored in an indexed array data
structure. Associated with each root is a separate “octree” data structure that
contains all of the blocks making up the leaves of the tree which were created
from the original parent blocks during mesh refinement. Each grid block corre-
sponds to a node of the tree. Traversal of the multitree structure by recursively
visiting the parents and children of solution blocks can be used to determine
block connectivity. However, in order to reduce overhead associated with ac-
cessing solution information from adjacent blocks, the neighbors of each block
are computed and stored directly, providing interconnects between blocks in the
hierarchical data structure that are neighbors in physical space.

One of the advantages of the preceding hierarchical data structure is that it
is relatively easy to carry out local mesh refinement at anytime during a cal-
culation. If, at some point in a computation, a particular region of the flow is
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Fig. 2. Solution blocks of a computational mesh with three refinement levels originating
from two initial blocks and the associated hierarchical multiroot octree data structure.
Interconnects to neighbors are not shown.
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deemed to be sufficiently interesting, better resolution of that region can be at-
tained by refining the solution blocks in that region, without affecting the grid
structure in other regions of the flow. Reducing the grid resolution in a region
is equally easy. There is no need for completely remeshing the entire grid and
recalculating block connectivity every time a mesh refinement is performed. Al-
though other approaches are possible, in BATSRUS the coarsening and division
of blocks are directed using multiple physics-based refinement criteria [43,44,46].
In particular, decisions as to when to refine or coarsen blocks are made based on
comparisons of the maximum values of various local flow quantities determined
in each block to specified refinement threshold values. Note that the refinement
thresholds are dynamically adjusted so as to exercise some control over the to-
tal numbers of blocks, and hence cells, used in a calculation. We also note that
other refinement criteria can also be used, such as a combination of estimated
numerical errors.

An example illustrating the adaptation of the block-based Cartesian mesh to
an evolving solution is shown in Fig. 3, which shows the grid at four different
instances in time for an unsteady calculation and depicts both the solution blocks
(thick lines) and computational cells (thin lines) of the evolving grid. As noted
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Fig. 3. Evolution of a computational mesh illustrating grid adaptation in response to
changes in the numerical solution. Cross sectional cuts through a 3-D grid are shown
for a solar wind calculation at four different instances in time. The computational cells
are not shown for the smaller blocks.
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above, each level of refinement in the grid introduces cells that are smaller by a
factor of 2 in each dimension from those one level higher in the grid. Typically,
calculations may have 10-15 levels of refinement; some calculations may have
more than 20 levels of refinement. In the case of 20 levels of refinement, the finest
cells on the mesh are more than one million times (220) smaller in each dimension
than the coarsest cells. The block-based AMR approach described above has
many similarities to the cell-based method proposed by De Zeeuw and Powell
[16]. Although the block-based approach is somewhat less flexible and incurs
some inefficiencies in solution resolution as compared to a cell-based approach,
the block-based method offers many advantages over a cell-based technique when
parallel implementations of the algorithms are considered and performance issues
are taken into account. As will be discussed below, the block adaptation readily
enables domain decomposition and effective load balancing and leads to low
communication overhead between solution cells within the same block.

8 Parallel Implementation

The parallel block-based AMR solver was designed from the ground up with a
view to achieving very high performance on massively parallel architectures. The
underlying upwind finite-volume solution algorithm, with explicit time stepping,
has a very compact stencil and is therefore highly local in nature. The hierar-
chical data structure and self-similar blocks make domain decomposition of the
problem almost trivial and readily enable good load-balancing, a crucial element
for truly scalable computing. A natural load balancing is accomplished by simply
distributing the blocks equally amongst the processors. Additional optimization
is achieved by ordering the blocks using the Peano-Hilbert space filling curve to
minimize inter-processor communication. The self-similar nature of the solution
blocks also means that serial performance enhancements apply to all blocks and
that fine grain parallelization of the algorithm is possible. The parallel imple-
mentation of the algorithm has been carried out to such an extent, that even
the grid adaptation is performed in parallel.

Other features of the parallel implementation include the use of FORTRAN
90 as the programming language and the message passing interface (MPI) library
for performing the interprocessor communication. Use of these standards greatly
enhances the portability of the code and leads to very good serial and parallel
performance. The message passing is performed in an asynchronous fashion with
gathered wait states and message consolidation.

Implementation of the algorithm has been carried out on Cray T3E super-
computers, SGI and Sun workstations, on Beowulf type PC clusters, on SGI
shared-memory machines, on a Cray T3D, and on several IBM SP2s. BATSRUS
nearly perfectly scales to 1,500 processors and a sustained speed of 342 GFlops
has been attained on a Cray T3E-1200 using 1,490 PEs. For each target ar-
chitecture, simple single-processor measurements are used to set the size of the
adaptive blocks. The scaling of BATSRUS on various architectures is shown in
Fig. 4.
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Fig. 4. Parallel speedup of BATSRUS on various architectures. Black dashed lines
represent perfect scaling from single node performance.

9 Time to Solution

Since a major goal of global space plasma simulations is the creation of a pre-
dictive space weather tool, wallclock time to solution is a paramount issue. In
particular, a predictive model must run substantially faster than real time. From
the starting point – the observation of a solar event, to the ending point – post-
processing the data from a simulation based on the initial conditions derived
from the observations, a simulation must be accomplished rapidly to be of use.

The main limitation of the present generation of global space plasma codes
is the explicit time stepping algorithm. Explicit time steps are limited by the
Courant-Friedrichs-Lewy (CFL) condition, which essentially ensures that no in-
formation travels more than a cell size during a time step. This condition rep-
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resents a non-linear penalty for highly resolved calculations, since finer grid res-
olution not only results in more computational cells, but also in smaller time
steps.

In global MHD simulations of space plasmas the CFL condition is controlled
by two factors: (1) the smallest cell size in the simulation, and (2) the fast
magnetosonic speed in high magnetic field, low plasma density regions. In a
typical magnetosphere simulation with a smallest cell size of about 0.25 RE the
CFL condition limits the time step to about 10−2 s. This small step is primarily
controlled by the high fast magnetosonic speed (due to the high Alfvén speed)
in the near-Earth region.

9.1 Local Time Stepping

In the local time stepping approach the time step in each cell of the computa-
tional domain is determined by the local stability condition. The flow variables
in cell i are advanced from time step n to time step n+ 1 as

Un+1
i = Un

i +Δtni (−∇ · F +Q)i (24)

where the local time step is determined from the stability condition. Here U
represents the conservative state vector, F is the flux diad and Q is the source
term. In case of ideal MHD, the time step is determined by the CFL condition

Δtni = C
Δxi

cfast
i + |ui|

(25)

where C < 1 is the Courant number and cfast
i is the fast speed in cell i. In

more than 1D the sum of the speeds in all directions should be taken in the
denominator.

Note that this technique is different from “sub-cycling” when cells are ad-
vanced at the same physical time rate, but the number of time-steps taken by
individual cells varies. For example, in adaptive grids it is customary to set the
time-step to be inversely proportional to the size of the cell, so that a finer cell
typically makes two half time-steps while the coarser cell makes only one full
time-step. In this method the time-steps are still determined by a global sta-
bility condition as opposed to local time-stepping where time-steps are set on a
cell-by-cell basis.

It is easy to see from (24) that the steady state solution, if it exists, satisfies

0 = (−∇ · F +Q)i (26)

since in steady state Un+1
i = Un

i and we can simplify with the time step Δtni
which is always a positive number. Consequently the steady state solution is
independent of the time step, and it does not matter if it is local or global.

The above proof assumes that the steady state is fully determined by the
boundary conditions. This is a non-trivial assumption, because the MHD equa-
tions are non-linear, and there is no mathematical theorem that would guarantee
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the existance and uniquness of the steady state solution. In practice, magneto-
sphere simulations seem to converge to the same solution independent of the
initial conditions or the time integration scheme.

The applicability of the local time-stepping technique in a given scheme pri-
marily depends on the evolution of ∇ · B. In some methods even if ∇ · B = 0
initially, the numerical transients towards steady state will destroy this prop-
erty if the local time stepping is applied. For instance, it can be shown that the
constrained transport scheme cannot be combined with local time stepping.

9.2 Implicit Time-Stepping

In BATSRUS we have a number of time stepping algorithms implemented. The
simplest and least expensive scheme is a multistage explicit time stepping, for
which the time step is limited by the CFL stability condition. We have also im-
plemented an unconditionally stable fully implicit time stepping scheme [65,36].
The second order implicit time discretization (BDF2) requires the solution of a
non-linear system of equations for all the flow variables. This can be achived by
the Newton-Krylov-Schwarz approach: a Newton iteration is applied to the non-
linear equations; a parallel Krylov type iterative scheme is used to solve the linear
systems; the convergence of the Krylov solver is accelerated with a Schwarz type
preconditioning. In our implementation the Krylov solver is BiCGSTAB, and a
modified block incomplete LU (MBILU) preconditioner is applied on a block by
block basis. Since every block has a simple Cartesian geometry, the precondi-
tioner can be implemented very efficiently. The resulting implicit scheme requires
about 20-30 times more CPU time per time step than the explicit method, but
the physical time step can be 1,000 to 10,000 times larger. This implicit algo-
rithm has a very good parallel scaling due to the Krylov scheme and the block
by block application of the preconditioner.

In BATSRUS, we can combine explicit and implicit time stepping. Magne-
tosphere simulations include large volumes where the Alfvén speed is quite low
(tens of km/s) and the local CFL number allows large explicit time steps (tens
of seconds to several minutes). In these regions implicit time stepping is a waste
of computational resources. Since the parallel implicit technique we use is fun-
damentally block based we only treat those blocks implicitly where the CFL
condition would limit the explicit time step to less than the selected time step
(typically ∼ 10 s). Needless to say, this combined explicit-implicit time stepping
represents more computational challenges (such as separate load balancing of
explicit and implicit blocks). Overall, this solution seems to be a very promis-
ing option, but other potential avenues need to explored before one makes a
final decision about the most efficient time-stepping algorithm for space MHD
simulations. These questions will be discussed in an upcoming paper [68].

10 Ionosphere–Magnetosphere Coupling

The state of the magnetosphere is controlled by conditions in the solar wind and
in the ionosphere. Solar wind conditions are imposed as boundary conditions at
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the outer boundaries of the simulation domain. Even though the numerical pro-
cedures used to impose these boundary conditions can be quite sophisticated, the
distant solar wind (in all directions) is assumed to be unaffected by the presence
of the magnetosphere. This assumption makes the outer boundary conditions
relatively simple (at least in principle).

The ionosphere–magnetosphere (I-M) coupling, on the other hand, is a highly
non-linear two-way interaction which strongly affects the large-scale behavior of
both domains. Self-consistent global magnetosphere models include some kind
of dynamic ionosphere model which interacts with the magnetosphere and pro-
vides ionospheric boundary conditions actively responding to changing magne-
tospheric conditions.

While mass exchange between the ionosphere and the magnetosphere is un-
doubtedly of major importance, the dominant component of I-M coupling is a
system of field-aligned currents (FACs) connecting the magnetosphere and the
high-latitude ionosphere. These FACs carry momentum (electromagnetic stress)
and energy (Poynting flux) along stretched magnetic field lines connecting the
ionosphere and the magnetosphere. Self-consistent global magnetosphere models
need to describe the generation and closure of these FACs through appropriate
boundary conditions and embedded non-MHD models.

The most important current systems coupling the ionosphere and the magne-
tosphere are the so called Region 1 and Region 2 currents. Region 1 FACs, flowing
near the open-closed magnetic field boundary, connect the magnetopause cur-
rent to the ionosphere where they close through ionospheric Pedersen currents.
Region 2 FACs flow along closed magnetic field lines and they connect to the
ionosphere at lower magnetic latitudes than the Region 1 current. Region 2 cur-
rents are generated in the inner part of the plasma sheet and in the ring current
region.

The generation of Region 2 currents can not be adequately described by
an MHD model alone. The main physical process leading to the generation of
these currents is the gradient and curvature drifts of hot magnetospheric parti-
cles. Since single-fluid MHD represents all particles with a single bulk velocity
(obtained as a mass weighted average), it provides an inaccurate representation
of the important drift processes (in reality electrons and ions drift in opposite
directions, and ions with different energy and equatorial pitch-angle have very
different drift velocities). As a result of this limitation of the single-fluid treat-
ment, one needs to embed an accurate drift model into the global MHD code in
order to get physically consistent Region 2 currents.

BATSRUS has been coupled to two ionosphere models to provide ionospheric
current closure (the user can choose from the two available models) and a drift
model to account for the generation and closure of FACs.

10.1 Electrostatic Ionosphere

The simplest I-M coupling procedure involves a height integrated electrostatic
ionosphere model. In this case the MHD code has an inner boundary at a radius
of RB (for explicit time-stepping we typically use RB = 2.5RE). At this inner
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boundary, the plasma density, temperature, and velocity are specified. In addi-
tion, the magnetic field is allowed to float (zero gradient of the normal compo-
nent), so currents can flow along the boundary. The velocities which are imposed
on the boundary are calculated in the ionosphere in a three step process:

1. field aligned currents are calculated from the curl of the magnetic field at
RB + 1RE, and these are mapped down to the ionosphere,

2. a height-integrated ionospheric conductance pattern is generated and the iono-
spheric potential is calculated from the equation:

jR (RE) = [∇⊥ · (Σ · ∇ψ)⊥]
R=RE

(27)

which describes the relationship between the height integrated conductance
tensor, Σ, the ionospheric potential, ψ, and the radial component of the cur-
rent, jR; and finally

3. the electric potential is mapped out along field lines to the inner boundary at
RB where electric fields and velocities are generated. The corotation velocity
field is added to the ionosphere generated velocity field.

The details of our conductance model as well as some simulations results using
this method are given in [52,53,55].

10.2 BATSRUS–TIEGCM Coupling [54]

As our physical understanding of the magnetosphere – ionosphere system in-
creases, our need to have more accurate models of the coupled system also grows.
Recently we developed a coupled model of the magnetosphere – ionosphere –
thermosphere system. The model is based on BATSRUS [46] and the thermo-
sphere – ionosphere – electrodynamics general circulation model (TIEGCM) [50]
which has been used in numerous studies of the ionosphere - thermosphere sys-
tem.

The TIEGCM solves for the thermospheric and ionospheric composition,
temperature, and winds. It solves for mass mixing ratios of the neutral major
species O2, N2, and O using full transport and chemistry, while the minor species
N(2D), N(4S), NO, He, and Ar are obtained by assuming that they are in local
equalibrium with the major species. For the ions, the O+

2 dynamics are consid-
ered, while the species N+

2 , NO+, and N are considered to be in local equalibrium
with O+

2 . The TIEGCM is a full 3-dimensional code with 5◦ latitude by 5◦ longi-
tude by 0.5 scale height altitude cells. There are 29 pressure levels in the model
such that the simulation spans from ∼ 95 km to 650 km in altitude.

The electrodynamics within the TIEGCM focuses on the middle and lower
latitudes, with a self consistent calculation of the interaction between the neutral
winds, currents, and electric fields. At the high latitudes, an external electric field
is assumed, and the neutral winds do not affect this field (i.e. there is no ion
drag). At all latitudes, the neutral winds are coupled with ion flow through ion
drag terms. A transition region exists where the model linearly scales the electric
field between the high and middle latitude regions. The electrodynamics of the
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TIEGCM are solved on a magnetic apex grid based on the 1985 International
Geomagnetic Reference Field (IGRF) [51].

The main auroral electron precipitation is specified at high latitudes using
an external model [57]. In addition to the main oval, a polar cap precipitation
is specified as well as a spatially limited cusp precipitation. These precipitation
patterns are used to generate 3-d ionization rates, and therefore strongly control
the electron density at high latitudes.

The ionosphere is coupled to the MHD code in a similar manner as in the
case of an electrostatic ionosphere (see section 10.1). The field aligned currents
at 3.5 RE are derived from ∇×B. These currents are mapped down to the iono-
sphere using the intrinsic magnetic field within the code, and the currents are
scaled by the ratio of the magnetic field in the ionosphere to that in the mag-
netosphere. The currents are combined with a conductance pattern to produce
a potential pattern, which is mapped up to the magnetospheric inner boundary
at 2.5 RE. Corotation velocities are determined and added to the convection
velocities derived from the potential pattern. These velocities are applied as the
inner boundary condition on the MHD solution.

BATSRUS provides the ionospheric potential pattern and electron precip-
itation pattern for TIEGCM. The electon precipitation is used to determine
the nightside ionization in calculating the electron density. The electron density,
combined with the densities of different neutral consituents, is subsequently used
to determine the densities of different ion species. Collision rates between ions
and neutrals are then calculated. These collision rates specify the acceleration
of the neutral wind and the different conductivities.

In the low- and mid-latitude region, the neutral winds drive the dynamo
calculation. This is done by taking a field-line integral of the neutral wind velocity
multiplied by the conductivity. The divergence of this quantity is considered to
be a quasi-neutral wind field aligned current, and is used for the calculation of
the low- and mid-latitude dynamo in the TIEGCM. This quantity is also fed back
into the MHD potential solver, where it is subtracted from the magnetospheric
FACs. The neutral wind driven field aligned currents above 60◦ are considered
in the calculation of the MHD potential, while those below are ignored.

The conductances are not completely consistent between the two models.
The reasoning for not using the TIEGCM calculated conductances in the MHD
model is that the grid size in the TIEGCM (5◦ latitude by 5◦ longitude) is too
large. The auroral zone is ill represented by the TIEGCM. Because the particle
precipitation is calculated by the MHD model, and the conductances derived
from the Robinson formula [56] closely match those derived by models such as the
TIEGCM, it was decided that it is better to use the high resolution conductances
from the MHD model than the low resolution conductances from the TIEGCM.
Once the resolution of the TIEGCM is increased, a more self-consitent coupling
can occur.

The BATSRUS–TIEGCM coupling has been fully implemented and tested
the first results obtained with the coupled model have also been reported [54].
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10.3 BATSRUS–RCM Coupling [17]

The Rice Convection Model (RCM) calculates the dynamic behavior of the par-
ticles and the electric fields and currents in the Earth’s inner magnetosphere
(the region of closed magnetic lines). The physics of this region is complicated,
because it contains overlapping particle distributions with a wide range of ener-
gies and characteristics. These different coexisting particle populations cannot
be treated as a single fluid, because they all move differently. The RCM rep-
resents the particles in terms of 30-200 separate fluids. Its equations and nu-
merical methods have been specifically designed for accurate treatment of the
inner magnetosphere [31,29,71,18], including the flow of electric currents along
magnetic field lines to and from the conducting ionosphere. The RCM does its
primary calculations on a 2D grid on a spherical shell in the ionosphere. Values
in the magnetosphere are computed by mapping out along magnetic field lines.
The ionospheric grid is fine, typically about 0.5 degrees latitude in the auro-
ral zone. The RCM computes these currents and the associated electric fields
self-consistently.

The essential limitation of the RCM is that it only describes the inner mag-
netosphere: one needs to specify its connections to the outer magnetosphere and
to the ionosphere and thermosphere through externally specified magnetic field
models and particle source/sink boundary conditions. This can be done by cou-
pling RCM to a global MHD code which dynamically provides these inputs and
uses the results of the drift physics represented by RCM to improve the MHD
solution.

RCM calculates the Region 2 field-aligned currents using the Vasyliunas for-
mula [70]. This formula (which is also valid in the MHD limit) relates the field
aligned current in slow flow regions to the cross product of the pressure gradient
and the gradient of the magnetic flux tube volume. The pressure is calculated
as a sum of partial pressures of the large number of “species,” while the flux
tube volume is calculated by integrating the flux tube cross secton (∝ 1/B)
along magnetic field lines. In dynamic calculations (when the magnetic field is
changing with time) the flux tube volume calculation is the most time consuming
component of the entire simulation.

As a first step in coupling BATSRUS and RCM the Rice Convection Model
was reformulated and a modern advection module was incorporated. Specifically
the following changes were made:

1. Make the RCM code and its data structure compatible with BATSRUS.
2. Introduce MPI parallelization into RCM.
3. Introduce a new numerical scheme for solving the advection equations to

achieve second-order accuracy and to handle time-dependent moving bound-
ary conditions.

4. Improve other numerical algorithms (e.g., Birkeland current calculation.)

These changes in RCM already resulted in new physics, since the updated RCM
code has more powerful capabilities than the original [60].
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In the second step we introduced full, two-way coupling between BATSRUS
and RCM. BATSRUS provides to RCM the full near-earth magnetic field (all
closed field lines) as well as the flux-tube volume for the magnetic field line
originating at each RCM grid point in the ionosphere. In addition, BATSRUS
also provides the high-latitude ionospheric electric potential distribution and the
particle sources at the outer boundaries at RCM. In return, RCM provides the
hot plasma pressure averywhere in the closed field line region, which is used to
to “nudge” the MHD pressure towards the RCM pressure (this is done through
a source term).

The most computationally challenging aspect of this two-way coupling pro-
cedure is mapping between the 2D RCM and 3D MHD grids and the related cal-
culation of the flux-tube volume for the RCM grid. This calculation is extremely
time consuming if one uses standard field-line tracing routines and methods (in
case of a reasonably refined grid this step might take hours of CPU time). We
developed a block-based parallel ray-tracing algorithm which is about 104 times
faster than the “brute force” method using a modest number of processors (about
32) [17]. This new algorithm makes the frequent two-way information exchange
possible between BATSRUS and RCM.

The self-consistently coupled BATSRUS–RCM code has been recently tested
and the results are being published [17]. The coupled code is capable describing
the I-M coupling in a self-consistent manner, including the Region 1 and Region
2 FAC systems.

11 Applications

BATSRUS has been extensively applied to global numerical simulations of the
inner heliosphere including CME propagation [24,26], the coupled terrestrial
magnetosphere-ionosphere [23,61,62], and the interaction of the heliosphere with
the interstellar medium [38]. In addition, it has also been successfully applied
to a host of planetary problems ranging from comets [22,27], to Mercury [34],
Venus [4], Mars [40], Saturn [28], to planetary satellites [33,35].

In this section we briefly summarize our most ambitious space weather sim-
ulation so far, in which we used BATSRUS to simulate an entire space weather
event, from its generation at the Sun through the formation and evolution of a
CME, to its interaction with the magnetosphere-ionosphere system [24,26]. In
this simulation we resolved multiple spatial and temporal scales and took ad-
vantage of frequent grid refinements and coarsening to follow the CME through
interplanetary space. The total number of cells varied between 800,000 and 2
million as the solution evolved. The simulation used 13 levels of grid refinement.
The simulation ran faster than real time on a 512 node Cray T3E-600 super-
computer. This simulation demonstrates that we have the necessary experience
to undertake the research outlined in this proposal.

Here we only show a few highlights of this simulation. The detailed results
have been published in JGR-Space Physics [26].
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Fig. 5. 3D representation of the steady-state solar wind solution. The shading repre-
sents log |B| in the (x, z)- and (x, y)-planes. The thin black lines are the computational
mesh and the thick solid lines are magnetic field lines: grey denotes the last closed field
lines, black is open field lines expanding to the interplanetary medium just above the
heliospheric current sheet, and finally, white lines show open magnetic field lines in the
(y, z)-plane.

A steady state solar wind was obtained in the corotating frame for a tilted
rotating Sun. The intrinsic magnetic field was approximated by the superposition
of a tilted (with respect to the rotation axis) octupole and dipole. Figure 5 depicts
a three-dimensional representation of the predicted pre-event steady-state solar
wind solution in the vicinity of the Sun. The narrow dark region shown in Fig. 5,
which also coincides with regions of higher mesh refinement, corresponds to
the beginning of the heliospheric current sheet. Due to the combined effects of
magnetic tilt and solar rotation, the current sheet is tilted with respect to the
rotation axis, and deformed, and resembles a “ballerina skirt.”

Figure 6 shows a 3D representation of the magnetic field configuration 9
hours after the initiation of the CME. The density enhancement first leads to the
“filling” of the closed magnetic field lines with additional plasma and subsequent
expansion of the closed field line region. One can see that the closed field lines
become greatly stretched by the outward moving plasma. This is due to the fact
that the plasma β (the ratio of the kinetic and magnetic pressures) is quite large
and the magnetic field is “carried” by the outward moving plasma. We also note
the decrease of magnetic field strength behind the leading edge of the outward
moving disturbance.

The dynamic response of the global magnetosphere to the changing solar
wind conditions produced by the density-driven CME was also computed as
part of this simulation. The global magnetospheric configuration for quiet-time
southward IMF conditions is shown in Fig. 7. During the event the solar wind
velocity remained nearly radial with the speed gradually decreasing from about
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Fig. 6. 3D representation of magnetic field lines 9 hours after the initiation of a CME.
Grayscale represents log(B), white lines are open magnetic field lines, grey lines rep-
resent magnetic field lines with both ends connected to the Sun.

550 km/s to about 450 km/s. The solar wind dynamic pressure increased from
its pre-CME value of 2.25 nP (at t = 72 hrs) to 4.6 nP at the peak of the event.

The ionospheric potential and convection patterns also change during the
CME event. The ionospheric convection shows the two-cell pattern of ionospheric
convection typical for southward-type IMF conditions. The convection pattern is
also “twisted” due to the presence of a non-zero IMF By component. The most
important change in the ionosphere is the doubling of the cross-cap potential
drop from 30 kV at 70.5h to 60 kV some 27 hours later.

Fig. 7. 3D representation of the last closed terrestrial field lines for southward IMF
conditions. White field lines form the dayside magnetopause, while black ones map to
the magnetotail. The greyscale represents normalized thermal pressure.
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Overall, this simulated space weather event was not very geoeffective. It is
expected that we will be able to generate more geoeffective CMEs with the help
of more realistic explosive event generation modules. This simulation, however,
demonstrates the present capabilities of BATSRUS.

Acknowledgements

This work was supported by DoD MURI grant F49620-01-1-0359, NSF KDI
grant NSF ATM-9980078, NSF CISE grant ACI-9876943, and NASA AISRP
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65. G. Tóth, R. Keppens and M. A. Botchev: Astron. Astrophys., 332, 1159 (1998)
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Abstract. A three-dimensional (3-D) high-resolution magnetohydrodynamic (MHD)
simulation scheme is developed on unstructured grid systems to solve the complex-
system problems in space science and space weather in which numerical difficulties
arise from inhomogeneity due to strong background potential fields, inclusion of multi-
species ions, and formations of shocks and discontinuities. The ideal MHD equations
are extended to the 9-component MHD equations for multi-component ions and mod-
ified so as to avoid a direct inclusion of background potential field in dependent vari-
ables through the use of new variables. The numerical scheme adopts the finite volume
method (FVM) with an upwinding numerical flux based on the linearized Riemann
solver. Upwindings on unstructured grid systems are realized from the fact that the
MHD equations are symmetric with respect to the rotation of the space. Despite the
modifications of the equation system, the eigenvectors in the mode-synthesis matrix
necessary for the evaluation of the upwinding numerical flux can still be written analyt-
ically. To get a higher order of accuracy, the upwinding flux is extended to the third-
order total variation diminishing (TVD) numerical flux in the calculation of FVM,
through the monotonic upstream scheme for conservation laws (MUSCL) approach
and Van Leer’s differentiable limiter. Three numerical examples are given in order to
show the efficiency of the above scheme.

1 Introduction

Recently, the magnetohydrodynamic (MHD) simulations are widely applied to
many problems in space science with a great success [1] [2] [3] [4] [5] [6] [7] [8] [9]
[10] [11] [12]. A rapid development of supercomputers in computational speed
and memory size gives a conviction for further developments in this fruitful area.
In these studies, the developments of supercomputers and numerical schemes
are like the two wheels of a cart. In order to apply the MHD simulations to the
problems having more complex configurations, further improvements of numer-
ical schemes are also unavoidable. In this paper, we develop a numerical MHD
scheme that enables an exact treatment of multi-scale space plasma including
multi-component ions and strong background potential field, with an excellent
capturing of shocks and discontinuities.

In the space science, we must always study the complex systems which are
controlled by the coupling processes between different regions having quite differ-
ent characteristics. Auroral physics is a typical example of this kind of problem
[3], [5]. The main process controlling this problem is the coupling effects that

J. Büchner, C.T. Dum, M. Scholer (Eds.): LNP 615, pp. 275–295, 2003.
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occur between the magnetosphere and the ionosphere. The characteristic length
and time scales of these two regions are vastly different. If numerical MHD
simulations are applied to these problems, then it becomes necessary to assign
different grid point densities to each region, in order to facilitate the simultane-
ous treatment of the different regions. Therefore, it is unavoidable to adopt an
unstructured grid system. The ordinary finite difference method (FDM) which is
widely used to solve differential equations numerically is no longer applicable on
an unstructured grid system and so here we consider the finite volume method
(FVM) based on the flux conservation law [13].

High-speed flowing plasma that is frequently treated in space science tends
to form shocks and discontinuities. The use of standard numerical schemes of
second-order accuracy (e.g. the Lax-Wendroff method) generates spurious os-
cillations at high gradients. Therefore, there is a need to use more advanced
schemes that can adequately represent these shocks and discontinuities. An out-
standing approach is to evaluate numerical flux in the FVM from an upwinding
method based on the linearized Riemann solver [14] [15] [16]. To get a higher or-
der of accuracy, the upwinding scheme for numerical flux is extended to the total
variation diminishing (TVD) scheme. Among many TVD schemes, a third-order
TVD scheme based on the monotonic upstream scheme for conservation laws
(MUSCL) approach is considered in this paper [17] [18]. With this numerical
flux, excellent shock-capturing is enabled along with stable and highly-accurate
computations. The eigenvalues and eigenvectors of the MHD flux Jacobian ma-
trix necessary for the upwinding calculations are derived from the well-known
Alfven, fast and slow velocities [14]. The calculation of eigenvectors is done with
special care when wave propagations become parallel or perpendicular to the am-
bient magnetic field, because degenerations of eigenvalues occur in these cases
[14] [19].

Another problem in space science is that many planets and stars treated in
the complex-system simulation have a strong dipole magnetic field generated
in their interior regions. In the case of the earth, the magnitude of the dipole
magnetic field is about 30000 nT in the ionospheric region near the Earth, while
it diminishes rapidly in the magnetosphere to about 10 nT. Therefore, the mag-
nitude of the intrinsic magnetic field varies over a wide range in the whole treat-
ing region, in the problem of magnetosphere-ionosphere (M-I) couplings. On the
other hand, the variable components of magnetic field, which are calculated from
the MHD equations, exhibit a similar magnitude over the whole region. As a re-
sult, the ratio of variable to intrinsic components of the magnetic field becomes
extremely small in the ionospheric region. These situations give a difficulty in the
numerical study of the coupling process between two different regions. Especially,
severe difficulties appear in the energy equation. However, this difficulty due to
the wide range in the ratio of variable to internal magnetic fields can be avoided
from the fact that intrinsic magnetic field includes only potential components.
Thus, it becomes important to construct the MHD calculations suppressing the
direct inclusion of the intrinsic component of the magnetic field, as dependent
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variables [3] [19]. In this paper, therefore, a modified equation system is used to
cope with such a problem, changing dependent variables.

In order to apply the MHD simulation to more complicated problems in space
science, an additional improvements is imposed on the original MHD equations.
Since space plasma does not always consist of single ion specie, sometimes we
must treat the plasma that includes multi-component ions with the source and
sink [9]. The ordinary 8-component MHD equations can be extended to the
9-component MHD equations for 2-component plasma.

It is shown in this paper that the equation system with the above modifi-
cations can still be written in the conservation form and can also be treated
numerically through the FVM with the upwinding TVD flux. The eigenvalues
and eigenvectors necessary to construct a TVD scheme are calculated for the 9-
component MHD equations with modified variables. Construction of the scheme
is seen in Sects. 2, 3, 4, and 5. In Sect. 6, a brief comment is given about the
suitability of the present scheme for parallel computation. To show the feasi-
bility of the scheme, three numerical examples are shown in Sects. 7, 8, and 9.
The first example in Sect. 7 shows an excellent ability of present scheme for the
capturing of shocks and discontinuities. The second example in Sect. 8 demon-
strates the applicability of the present scheme to multi-component plasma. The
last example in Sect. 9 adopts the present scheme to the space weather problem
that includes a potential magnetic field, and shows the capability of low-noise
calculation even in the low-β region.

2 TVD Schemes for Hyperbolic Equations

The history of the development of numerical schemes for hyperbolic conservation
law is long and rich [20]. The idea that stable computation can be accomplished
through an approximate dissipation term was used in early schemes. The ad-
vection equation, the most simple hyperbolic equation, can be written in a one
dimensional coordinate system (x, t) as

∂u

∂t
+ C

∂u

∂x
= 0. (1)

Where C is an advection speed. Let un
i be the numerical solution of (1) at

x = i� x and t = n� t. Then, the explicit time integration of this equation is

un+1
i − un

i

�t = −Cu
n
i+1 − un

i−1

2�x +
d

2
un

i+1 − 2un
i + un

i−1

�t . (2)

The stability condition for equation (2) is 1 > d > k2, with k = |C|�t/�x.
Friedrichs-Lax, Godunov, and Lax-Wendroff schemes are obtained automatically
by selecting d = 1, d = k = |C�t/�x|, and d = k2 = (C�t/�x)2, respectively.
Out of these schemes only the Lax-Wendroff scheme has the second order accu-
racy.

Modern shock-capturing schemes add only enough dissipation in small lo-
calized regions to eliminate numerical oscillations. These schemes enforce some
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constraint on the problem, usually that the solutions be TVD. The Godunov
scheme can be modified to

un+1
i − un

i = C−i+1/2(u
n
i+1 − un

i )− C+
i−1/2(u

n
i − un

i−1), (3)

with
C−i+1/2 = (|C| − C)�t/2�x,C+

i−1/2 = (|C|+ C)�t/2�x. (4)

These coefficients satisfy the condition

0 < C−i+1/2 + C+
i−1//2 < 1, 0 < C−i+1/2, C

+
i−1//2, (5)

and the total variation at step n+ 1 under this condition is

TV (un+1) =
∑
|ui+1 + C−i+3/2(ui+2 − ui+1)− C+

i+1/2(ui+1 − ui)

−ui+1 − C−i+1/2(ui+1 − ui) + C+
i−1/2(ui − ui−1)|

≤
∑
C−i+3/2|ui+2 − ui+1|

+
∑

(1− C+
i+1/2 − C−i+1/2)|ui+1 − ui|

+
∑
C+

i−1/2|ui − ui−1|

=
∑
|ui+1 − ui|. (6)

Thus, the TVD is satisfied for the Godunov scheme. This sccheme is a first-order
upwind TVD scheme.

In order to obtain a higher-order TVD scheme, we write equation (2) in the
flux formula

un+1
i − un

i

�t = −
Fn

i+1/2 − Fn
i−1/2

�x , (7)

then the Godunov and Lax-Wendroff fluxes in the case of C > 0 are

FG
i+1/2 = Cui, (8)

and
FL

i+1/2 = Cui + C/2·(1− k)(ui+1 − ui), (9)

respectively. Equation (8) shows the fact that the Godunov scheme is an upwind
scheme. By combining Godunov and Lax-Wendroff fluxes as

Fi+1/2 = (1−Bi+1/2)FG
i+1/2 +Bi+1/2F

L
i+1/2, (10)

one can obtain

un+1
i − un

i

un
i−1 − un

i

= k − 1
2
k(1− k)Bi−1/2 +

1
2
k(1− k)Bi+1/2

ri
, (11)
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with
ri = (ui − ui−1)/(ui+1 − ui). (12)

In order for the scheme to be TVD, the left hand side of equation (11) must
be between 0 and 1 and the resulting sufficient condition obtained after some
simple algebra is the following,

− 2
k
< −2 < Bi−1/2 −

Bi+1/2

ri
< 2 <

2
1− k , (13)

which reduces to
0 < Bi+1/2, Bi+1/2/ri < 2. (14)

Commonly used limiters which give the constraint for the TVD scheme satisfy
this condition.

For a coupled nonlinear equation system

∂u
∂t

+
∂f(u)
∂x

= 0,A =
∂f
∂u
, (15)

the Riemann problem is solved to evaluate the upwind flux. From the flux Jaco-
bian matrix A, its eigenvalues λk, and eigenvectors rk,ui+1−ui can be expanded
as

ui+1 − ui =
∑
Ckrk, Ck = r−1

k �u,Ai+1/2rk = λkrk, (16)

then, the upwind flux can be evaluated as

Fi+1/2 = f(uR
i+1/2) = f(ui +

∑−
Ckrk) = f(ui) + A

∑−
Ckrk

= f(ui) +
∑−

λkCkrk = fi/2 + (fi+1 −
∑
λkCkrk)/2 +

∑−
λkCkrk

= (fi + fi+1)/2− (
∑+

λkCkrk −
∑−

λkCkrk)/2

= (fi + fi+1)/2− (
∑
|λk|Ckrk)/2

= (fi + fi+1)/2− (R|Λ|R−1�u)/2. (17)

The accuracy of the scheme increases by considering the interpolationof depen-
dent variables. An example is the MUSCL interpolation in which i and j are
replaced by L and R as

uL = ui + si{(1− si/3)(ui − ui−1) + (1 + si/3)(ui+1 − ui)}/4, (18)

uR = ui+1−si+1{(1+si+1/3)(ui+1−ui)+(1−si+1/3)(ui+2−ui+1)}/4, (19)

where si is a limiter at the grid point i.
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Assuming first-order accuracy in implicit terms, we can also obtain an im-
plicit MUSCL scheme as

�x
�t�un+1

i +
∂Fi+1/2

∂ui+1
�un+1

i+1 +
∂Fi+1/2

∂ui
�un+1

i

−∂Fi−1/2

∂ui
�un+1

i − ∂Fi−1/2

∂ui−1
�un+1

i−1

= −(Fn
i+1/2 − Fn

i−1/2), (20)

with a notation �un+1
i = un+1

i − un
i .

3 Finite Volume TVD Scheme
for 9-Component MHD Equations

In space plasma simulation, sometimes we must treat multiple plasma compo-
nents. The ideal MHD equations can be extended to the 9-component MHD
equations that treat 2-component plasma. The nondimensional conservation-
law form for these equations can be written in the Cartesian coordinate system
(x,y,z,t) as

∂u
∂t

+
∂F(u)
∂x

+
∂G(u)
∂y

+
∂H(u)
∂z

= S, (21)

where the dependent variables are u = (ρ,m,B, U, ρ2)T and F,G,H, and S are
flux functions in the x, y, z directions and source terms. ρ, m,B and U are
the density, momentum, magnetic field and energy density. Where ρ = ρ1 + ρ2
with ρ1 and ρ2 being the densities of first and second plasma components. Using
Gauss’s law, the integration form of equation (21) can be written as

∂

∂t

∫
udv +

∫
(Fnx + Gny + Hnz)ds =

∫
Sdv, (22)

where dv and ds are the volume and surface element of the control volume and
n is a unit vector normal to the surface of the control volume.

Let us define a matrix T which rotates the x axis to the direction of n

T =

∣∣∣∣∣∣∣∣∣∣
1

T1
T1

1
1

∣∣∣∣∣∣∣∣∣∣
, (23)

with

T1 =

∣∣∣∣∣∣
nx ny nz

t1x t1y t1z

t2x t2y t2z

∣∣∣∣∣∣ , (24)
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then equation (22) is expressed as

∂

∂t

∫
udv +

∫
T−1T(Fnx + Gny + Hnz)ds =

∫
Sdv, (25)

where t1 and t2 are unit vectors tangent to the surface of the control volume
and orthogonal to each other. Since the form of the MHD equations must be
unchanged for the rotation of the coordinate system, the relation

T(F(u)nx + G(u)ny + H(u)nz) = F(Tu) = F(un) (26)

must hold [15] [16] [19]. Then one can obtain from equation (25)

∂

∂t

∫
udv +

∫
T−1F(un)ds =

∫
Sdv. (27)

Introducing new dependent variables u1 = (ρ,m,B1, U1, ρ2)T = (ρ,mx,my,
mz, Bx − B0x, By − B0y, Bz − B0z, U − (B1·B0)/β − B2

0/(2β), ρ2)T , with the
conditions ∂B0/∂t = rotB0 = divB0, then the equation for u1 can be written
in the conservaton-law form as

∂

∂t

∫
u1dv +

∫
T−1F(u1n,B0n)ds =

∫
Sdv, (28)

with u1n = Tu1, mn = T1m = (mn,mt1,mt2)T , Bn = T1B = (Bn, Bt1, Bt2)T ,
B1n = T1B1 = (B1n, B1t1, B1t2)T , and B0n = T1B0 = (B0n, B0t1, B0t2)T . The
flux function in the normalized form is written

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mn

P + mnmn

ρ + B2

2β − 1
βBnBn − B2

0
2β + 1

βB0nB0n
mt1mn

ρ − 1
βBt1Bn + 1

βB0t1B0n
mt2mn

ρ − 1
βBt2Bn + 1

βB0t2B0n

0
mn

ρ Bt1 − mt1
ρ Bn

mn

ρ Bt2 − mt2
ρ Bn

mn

ρ (U1 + B2
1

2β + P )− B1n

β

×(mn

ρ B1n + mt1
ρ B1t1 + mt2

ρ B1t2)
+B1t1

β (mn

ρ B0t1 − mt1
ρ B0n)

+B1t2
β (mn

ρ B0t2 − mt2
ρ B0n)

ρ2
ρ mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

In the solar wind-magnetosphere-ionosphere (S-M-I) interaction problem, a dipole
field will be adopted as B0. In the expression of (29), the B0 terms are added to
the second, third, fourth, and last components of F, considering rotB0×B0 = 0
and m×B·rotB0 = 0. The variable component of energy density U1, density ρ,
momentum m, and the variable components of magnetic field B1 are related to
pressure P by the equation

P = (γ − 1)(U1 − m
2

2ρ
− B

2
1

2β
). (30)
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Constants in these equations are β and γ, with β = μρ0RT0/B
2
00, γ the poly-

tropic index, μ the magnetic permeability, R the gas constant, ρ0 the normaliza-
tion density, B00 the normalization field, and T0 the normalization temperature.
Momentum m and time t are normalized by ρ0(RT0)1/2 and L0/(RT0)1/2, with
L0 normalization length.

From equation (28), a discrete formulation of the MHD equations in the FVM
style is written for the grid point i in the form

∂

∂t
u1iVi +

∑
j
T−1

ij Fij(u1ni′ ,u1ni,uinj ,u1nj′ ,B0nij)Sij = SVi, (31)

where j denotes the grid points neighboring the grid point i, Vi denotes the
volume of the control volume cell which includes the grid point i, Tij is the
rotation matrix at the interfacing surface between i and j, Sij is the surface area
of the i and j interface, u1ni′ , u1ni, u1nj , and u1nj′ are u1i′ , u1i, u1j , and u1j′

rotated by Tij , and B0nij is B0n at the i and j interface. Adopting equation
(17), the first-order upwind numerical flux Fij for equation (31) is given as

Fij =
1
2
[F(u1nj ,B0nij) + F(u1ni,B0nij)−Rij | Λij | R−1

ij (u1nj − u1ni)]. (32)

Here, the mode synthesis matrix Rij and the eigenvalue matrix Λij are cal-
culated from the following diagonalization process:

AijRij = RijΛij , (33)

Aij =
∂F
∂u1n

(uinij ,B0nij), (34)

with Aij the flux Jacobian matrix of F at the i and j interface, and u1nij a
symmetric average of u1nj and u1ni. As seen from equation (33), the mode
synthesis matrix consists of the right eigenvectors of the flux Jacobian matrix
rijk, and the diagonal matrix Λij consists of eigenvalues λijk, k = 1 ∼ 9.

To get a higher order of accuracy, the MUSCL approach is used changing i
and j in equation (32) to L and R, suffixes which indicate variables just on the
negative and positive sides of the interface [17]. Adopting equations (18) and
(19), then the numerical flux is defined by the following relation:

Fij =
1
2
[F(u1nR,B0nij) + F(u1nL,B0nij)−RRL | ΛRL | R−1

RL(u1nR − u1nL)],

(35)
with

ARLRRL = RRLΛRL, (36)

u1nL = u1ni + si(1− si/3)(u1ni − u1ni′) + (1 + si/3)(u1nj − u1ni)/4, (37)

u1nR = u1nj − sj(1− sj/3)(u1nj′ − u1nj) + (1 + sj/3)(u1nj − u1ni)/4, (38)

where the diagonal matrices si and sj consist of the so-called Van Leer’s differ-
entiable limiter. The k-th components of si and sj are calculated from the k-th
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components of u1n. Without the suffixes 1 and k, they are written as

si =
2(unj − uni)(uni − uni′) + ε

(unj − uni)2 + (uni − uni′)2 + ε
, (39)

sj =
2(unj′ − unj)(unj − uni) + ε

(unj′ − unj)2 + (unj − uni)2 + ε
, (40)

with ε a small number. Interpolation points i ’ and j ’ are obtained by extending
the line which connects grid points i and j to the neighboring surface of control
volumes.

A serious problem in numerical MHD simulations involves the violation of
the divB = 0 condition. Not only numerical roundoff errors but also the use
of upwind fluxes and a non-Cartesian grid system make it difficult to fulfill the
divB = 0 condition automatically. In the present calculation, an extra equation is
added to eliminate artificial magnetic monopoles [21]. The variable components
of magnetic field B1 are replaced every several time steps, by a new field B1c

given as
B1c = B1 + gradφ, (41)


2 φ = −divB1. (42)

To solve equation (41), the conjugate residual (CR) method is applied.

4 Eigenvalues and Eigenvectors
for the 9-Component MHD Equations

In this section, eigenvalues and eigenvectors are shown for the 9-component
MHD equations. For the Jacobian matrix of flux fuction (29), eigenvalues λk,
k = 1 ∼ 9 are [14]

λ1 = m′n, (43)

λ2,3 = m′n±|B′n|, (44)

λ4,5 = m′n±Vf , (45)

λ6,7 = m′n±Vs, (46)

λ8 = 0, (47)

λ9 = m′n, (48)

where
V 2

f , V
2
s =

1
2
[C0 +B′2±{(C0 +B′2)2 − 4C0B

′
n

2}1/2], (49)

C0 = γP/ρ, (50)

with the notation u′n = (ρ,m′
n,B

′
n, U, ρ2)

T = (ρ,mn/ρ,mt1/ρ,mt2/ρ, Bn/
√
βρ,

Bt1/
√
βρ, Bt2/

√
βρ, U, ρ2)T . In the expresion of eigenvalues,

√
C0, |B′n|, Vf and

Vs correspond to sound, Alfen, fast and slow velocities, respectively. In addi-
tion to one entropy, two Alfven, two fast and two slow waves of normal MHD
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equations, there appears one more entropy wave in the 9-component MHD equa-
tions. Calculations of eigenvectors must be done with special care avoiding the
degeneration of eigenvectors when wave propagations become perpendicular or
parallel to the magnetic field. The right eigenvectors rk which correspond to λk

are [19]

r1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m′n
m′t1
m′t2
0
0
0

0.5·m′2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (51)

r2,3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

∓B′′t2·sgn(B′n)
±B′′t1·sgn(Bn)

0

B′′t2
√

β
ρ

−B′′t1
√

β
ρ

∓(B′′t2m
′
t1 −B′′t1m′t2)·sgn(B′n) + (B′′t2B

′
1 t1 −B′′t1B′1 t2)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (52)

r4,5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

af

af (m′n±Vf )
afm

′
t1∓asB

′′
t1VfB

′
n

afm
′
t2∓asB

′′
t2VfB

′
n

0

asB
′′
t1V

2
f

√
β
ρ

asB
′′
t2V

2
f

√
β
ρ

af ·0.5·m′2 + afV
2
f /(γ − 1)±afVfm

′
n

∓asVf (B′′t1m
′
t1 +B′′t2m

′
t2)B

′
n

+af (−1)/(γ − 1)(V 2
f − C0)

+af (V 2
f − C0)(B′′t1B

′′
1 t1 +B′′t2B

′′
1 t2)

/(B′′ 2
t1 +B′′ 2

t2 )
afρ2/ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (53)
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r6,7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

as

as(m′n±Vs)
asm

′
t1±afB

′′
t1
√
C0/Vf ·sgn(B′n)

asm
′
t2±afB

′′
t2
√
C0/Vf ·sgn(B′n)
0

−afB
′′
t1

√
β
ρC0/V

2
f

−afB
′′
t2

√
β
ρC0/V

2
f

as·0.5·m′2 + asV
2
s /(γ − 1)±asVsm

′
n

±af (B′′t1m
′
t1 +B′′t2m

′
t2)

×√C0/Vf ·sgn(B′n) + as(−1)/(γ − 1)(V 2
s − C0)

+as(V 2
s − C0)(B′′t1B

′′
1 t1 +B′′t2B

′′
1 t2)

/(B′′ 2
t1 +B′′ 2

t2 )
asρ2/ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (54)

r8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (55)

r9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m′n
m′t1
m′t2
0
0
0

0.5·m′2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (56)

where
B′′t1 = (B′t1 + ε)/(B′2t1 +B′2t2 + 2ε2)1/2, (57)

B′′t2 = (B′t2 + ε)/(B′2t1 +B′2t2 + 2ε2)1/2, (58)

B1
′′
t1 = (B1

′
t1 + ε)/(B′2t1 +B′2t2 + 2ε2)1/2, (59)

B1
′′
t2 = (B1

′
t2 + ε)/(B′2t1 +B′2t2 + 2ε2)1/2, (60)

af = (V 2
f −B′ 2n )1/2/(V 2

f − V 2
s )1/2, (61)

as = (V 2
f − C0)1/2/(V 2

f − V 2
s )1/2Vf , (62)

and ε is a small number.
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5 Source Terms and Boundary Conditions

The selection of source terms and boundary conditions depends on the kind of
problem treated by the MHD simulation. Typical source terms considered in
space science are ion production and loss, gravitational acceleration and aero-
nomic friction. They are written as

F =

∣∣∣∣∣∣∣∣∣∣
q1 + q2 − L1 − L2
−νm− ρg

0
−m/ρ·(νm + ρg) + Tq(q1 + q2)/(γ − 1)− TL(L1 + L2)/(γ − 1)

q2 − L2

∣∣∣∣∣∣∣∣∣∣
, (63)

where qi and Li (i = 1, 2) are ion production and loss terms for i-th ion species, Tq

is the temperature of ions when they are produced, TL is the temperature of ions
when they are lost. ν and g are ion-neutral collision frequency and gravitational
acceleration. Production and loss rates qi and Li (i = 1, 2) are normalized by ρ0
and L0/(RT0)1/2.

A typical boundary condition on the outer boundary is to give a plasma flow
on the upstream side and a zero gradient condition on the downstream side.
Commonly used boundary conditions on the inner boundary are ion chemical
equilibrium, given plasma velocity, or zero gradient condition. In the case of S-
M-I coupling, the plasma velocity perpendicular to the ambient magnetic field
is decided from the field aligned current (FAC) flowing into the ionosphere.
Assuming a spherical ionosphere at r=1 Re, these processes are simulated on
the inner boundary and on the ionosphere from

∇·σ∇φI = Gm(rotB1·nb) = J‖, (64)

σ = σEUV + σDiff (P, ρ) + σJ(J‖), (65)

φm = φI − f1(J‖)|J‖|, (66)

m− (m·nb)nb = −ρ∇φm×B/B2, (67)

where σ is the ionospheric conductivity tenser, φI is the ionospheric potential,
φm is the magnetospheric potential, J‖ is the FAC, nb is a unit vector along
B, and Gm is a geometrical factor associated with the mapping along field lines
from r=3 Re to r=1 Re. σEUV , σDiff , and σJ are the ionospheric conductivities
due to the solar EUV, the diffuse auroral precipitation modeled by the pressure
and temperature, and discreet precipitation modeled by the upward FAC [5].
Parallel potential is introduced through f1 that is constant at the upward FAC
and 0 at the downward FAC.

6 Parallel Computation in a Spherical Geometry

Recently, the most powerful super-computers, such as the Fujitsu VPP and NEC
SX, adopt the vector-parallel architecture with a distributed memory system.
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Fig. 1. Grid structure for the 3-D FVM calculation

Efficient utilization of these vector-parallel super-computers is essential for the
future study of space MHD simulations. In parallel computations with a dis-
tributed memory system, it is desirable to set a one-dimensional structuring
axis in the three-dimensional space. In a spherical geometry that is important
for space science, this ”parallel” axis is chosen to be the radial direction. An
unstructured grid can then be generated on spherical surfaces which construct
the remaining two-dimensional space.

In the construction process of the grid system, it is desirable that two-
dimensional spherical surfaces are covered by control volumes of similar size,
because the integration time step is restricted by the smallest control volume.
An example for such kind of grid system is shown in Fig. 1. The left panel in
Fig. 1 shows the grid structure on the spherical inner boundary, while the right
panel shows how to construct a 3-D grid structure by extending the position of
spherically allocated grids outward from the inner boundary.

In parallel computations on the distributed memory system of vector-parallel
computers, it is important to identify the difference between distributed and re-
dundant data areas. The parallel axis is used to distribute dependent variables
to processors and to define the overlap data areas. In the finite volume TVD
scheme, the most serious load in calculations comes from those for eigenvalues
(43-50), eigenvectors (51-62), limiters (39,40) and numerical flux (29). These cal-
culations are done sequentially in subroutines on a two-dimensional redundant
data area, after copying 3-D dependent variables from a distributed data area
to two-dimensionl redundant data areas. Using this method means that we do
not have to rewrite subroutines with parallel programming constructs. The par-
allelization then occurs only in the main program which calls these subroutines.
In the calculation of numerical flux, the dependent variables on the neighboring
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grid point of the calculation point must be referred to. To enable this referring in
the parallel computation, the overlap data areas are used with the data transmis-
sion. Overlap data must be synchronized to data in the neighboring processors
before the subroutines begin concurrent operation. After the main calculations,
the final correction of the dependent variables is done in the main program, on
the distributed data area. Finally, two processors calculate the inner and outer
boundary conditions.

7 Numerical Example 1 (Heliospheric Structure)

The pressure difference between the solar corona and interstellar space drives
the ionized solar atmosphere outward, despite the restraining influence of solar
gravity. The solar wind thus generated interacts with the very local interstellar
medium (VLISM) at some large distance from the sun. Here, the volume of the
space created by the solar wind is called the heliosphere [8] [10] [11] [22] [23]. In
this section, results are shown for the MHD simulation of the heliosphere.

At a distance where the local ram pressure of the solar wind becomes com-
parable to the external VLISM pressure, the solar wind shocks to form the
termination shock (TS), which is a strong shock with a compression ratio 4.
Then outside the TS, the shocked subsonic solar wind flows to the downstream
direction of a uniform interstellar flow surrounding the heliosphere. This region
constrained by the VLISM and filled with shocked solar wind plasma is called
as heliosheath (HS). It is bounded inside by the TS and outside by a tangen-
tial discontinuity between the heliosphere and the VLISM called the heliopause
(HP). Some observational evidences suggests that the interstellar wind is also
supersonic. The supersonic interstellar flow recognizes the shocked solar wind
plasma in the HS as an obstacle and forms a bow shock (BS), which is a mag-
netoacoustic shock. The shocked interstellar wind inside the BS contacts the
shocked solar wind through the HP.

Since the formation process of the heliosphere generates many shocks and
discontinuities, it offers a good problem to test the shock-capturing capability of
the TVD scheme. The outer and inner boundaries for the calculation are set at
1000 AU and 50 AU. In this section, the interstellar plasma and the solar wind
plasma are assigned to ρ1 and ρ2, respectively. Consequently, ρ1 is zero at the
inner boundary and ρ2 is zero at the upstream boundary. On the inner boundary,
a supersonic solar wind is adopted. The solar wind speed and density at 1 AU
are assumed to be 400 km/sec and 5 cm−3 respectively, and the strength of the
toroidal interplanetary magnetic field (IMF) here is assumed to be 2.8∗cos(θ) nT
with θ the heliolatitude. Toward the outer boundary, the solar wind maintains
a constant velocity while its density and magnetic field fall with heliocentric
distance r as r−2 and r−1. The solar wind temperature at the inner boundary
is assumed to be 104 K. The speed, density and temperature of the interstellar
medium are assumed to be 25 km/sec, 0.1 cm−3, and 104 K. The direction of
the interstellar flow and magnetic field are assumed to be parallel to the ecliptic
plane (toward -x) and to the solar rotational axis (toward +z). The strength
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Fig. 2. Pressure distribution in the heliosphere

of interstellar magnetic field is 0.15 nT. S and B0 are not considered in this
problem.

Figure 2 shows the normalized equipressure (P) contour on the polar (upper
half) and ecliptic (lower half) planes. The interstellar wind is from the right. The
normalization value for P and contour spacing are 0.0144 pPa and 0.7, respec-
tively. From the pressure distribution, the major structures of the heliosphere,
the TS with Mach disk, the HP, and the BS are clearly visible as discontinu-
ities. These high-quality resolutions of discontinuities are due to the excellent
shock-capturing property of the TVD scheme.

At the BS the kinetic energy of the interstellar wind is converted to thermal
and magnetic energies. Downstream of the BS, consequently, gas pressure domi-
nates over the kinetic pressure. At the HP, increased gas and magnetic pressure
are supported by the HS plasma pressure which is maintained by a supply of
shocked solar wind pressure from the TS. The highest pressure in the HS appears
in the nose region because it must finally balance with the dynamic pressure of
the interstellar wind.

The enhanced HS pressure around the nose region accelerates the shocked
solar wind plasma toward the heliotail (HT). At the flank of the heliosphere,
the oblique TS also helps the HS flow direct downtail based on the principle
that at an oblique shock the downstream flow is always deflected away from
the shock normal. On the contrary, the tailside TS consists of right-angle shock,
because the post-shock flow can direct downtail as it is. Consequently, tangential
discontinuity develops in the downstream HT, to separate fast HT flow that
continues from the flank HS from a slow HT flow that exits directly from the
tailside TS. This is a basic mechanism to form a bullet-shaped TS (Mach disk)
on the downstream side [11].
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8 Numerical Example 2 (Solar Wind-Venus Interaction)

Since the internal magnetic field of Venus is negligibly small, the solar wind
makes a direct contact with the ionosphere. When the interaction processes be-
tween the solar wind and planetary ionospheres are studied, at least two plasma
components must be considered [9] [24] [25]. In the case of venusian ionosphere,
the primary component of ionospheric plasma is O+ ions, whereas the primary
component of the solar wind is H+ ions. So one must consider two plasma com-
ponents to distinguish the ionospheric plasma from the solar wind plasma. In
this section, therefore, the solar wind plasma and ionospheric plasma are as-
signed to ρ1 and ρ2, respectively. In this problem, source terms S are essentially
important, because the high-density low-temperature ionospheric plasma that
supports the impinging solar wind stratifies gravitationally on the balance of ion
production and loss, neutral drag, and the gravitational acceleration. For the
calculation of ρ2, L2, and ν, a stratified atmosphere composed of O and CO2 is
assumed around the planet. q1, L1, and B0 are set to zero in this section.

The inner and outer boundaries of the calculation region are at 1 Rp and
10 Rp, with Rp the planetary radius. On the outer boundary, the solar wind
flow is given on the upstream (+x) side while the zero gradient condition is
adopted on the downstream (-x) side. Where the IMF is assumed to be parallel
to the y-axis. Near the inner boundary, the ion-neutral collision and ion chemical
processes become dominant. Therefore, the ion chemical equilibrium and zero
plasma velocity conditions are adopted on the inner boundary. Since the scale
sizes of the ionosphere and the solar wind are quite different from each other,
the grid points must be allocated so as to be dense in the ionosphere and coarse
in the solar wind.

Figure 3 shows the result for the distributions of O+ (left) and total (=H+ +
O+, right) ion densities. The solar wind is from the left. The left and right panels
in Fig. 3 show contours of log(ρ2/ρsw) and log(ρ/ρsw), respectively. Where ρsw

is the solar wind density. The contour spacing is 0.2 and the dashed contours

Fig. 3. O+ density (left) and H++O+ density (right) around the planet
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Fig. 4. Pressure balance along the sun-planet line

are used at every 1.0. The minimum contour value for a dashed contour is 0.0.
The upper and lower halves of the two panels show sun-planet meridian planes
and equatorial planes defined by the direction of the IMF. The solid circles show
the size of the planet. An excellent capturing of shocks and discontinuities is
seen in Fig. 3. Results of the calculation show the formation of the BS, magnetic
barrier and the ionopause in the dayside region. At the ionopause, the primary
ion species change from H+ on the high-altitude side to O+ on the low-altitude
side. In the nightside region, the ionospheric structure shows rather complex
features. A part of O+ ions penetrates into the magnetotail which results from
the draping process of the IMF. Then, the penetrating O+ ions tend to gather
toward the central part of the magnetotail and form a high-density region. In
these results, the solar wind and ionospheric plasmas are distinguished clearly
by the 9-component MHD equations.

Figure 4 shows altitude distributions of fluid pressure (P), magnetic pressure
(B) and plasma dynamic pressure (Ram) at the subsolar point. Where small
rectangles show positions of radial grid points. The pressures are normalized
by the solar wind pressure. In the upstream solar wind, plasma kinetic energy
dominates both of fluid pressure and magnetic pressure. At the BS, plasma
kinetic energy is converted to plasma thermal energy. As a result, the fluid
pressure becomes dominant after passing the BS. Approaching the ionopause,
the magnetic pressure increases while the plasma pressure decreases, due to the
formation of the magnetic barrier. At the ionopause, the magnetic barrier is
supported by the fluid pressure of cold ionospheric plasma. This pressure of
cold ionospheric plasma is maintained by the photoionization and ion chemical
processes in the planetary upper atmosphere. The plasma pressure on the bottom
side of the ionosphere is supported by the neutral atmosphere through ion-
neutral collisions.
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9 Numerical Example 3 (Substorm and Space Weather)

A goal of the space weather effort is to increase our understanding of the S-
M-I coupling system. In recent years, the global MHD simulation has become
increasingly successful at constructing and predicting the behavior of the S-M-I
system [1] [5] [6] [12]. It gives a theoretical foundation for the complex behavior
of the S-M-I system that is controlled by the coupling process between different
regions.

In the solar wind interaction with the magnetosphere, energy and momen-
tum are transferred from the solar wind to the magnetosphere through non-
ideal MHD processes, to generate magnetospheric plasma convection [4]. Figure
5 schematically shows the construction of convection system. In the magneto-
sphere, the large-scale transportation of plasma is equivalent to a global electric
field. The process driving the magnetospheric convection is at the same time the
process generating the FACs, because the magnetospheric perpendicular stress
must be transmitted to the polar ionosphere so as the ionospheric convection to
follow the magnetospheric convection [3] [26]. In the current circuit connecting
the magnetospheric dynamo and the conducting ionosphere, the J×B force in
the ionosphere acts to accelerate the ionospheric convection against atmospheric
friction. As a counter part of this energy dissipation in the ionosphere, FACs
must be powered through the dynamo driven by the energy conversion in the
convection system. Therefore, acting as a load for the magnetospheric convection
in the M-I coupling system, the ionosphere controls the intensity of FAC.

In this section, we investigate the M-I processes that maintain the self-
consistency in the convection system, including the generation mechanism of
the M-I current systems, the ionospheric control of the magnetospheric configu-
ration, and possible extension of convection status to the substorm. The FAC and
plasma convection play a central role in the M-I coupling, while the state of en-
ergy source for these current systems depends on the solar wind-magnetospheric
interaction. To improve our understanding of this problem, therefore, a self-
consistent treatment is required for the coupling effects between three different
regions, namely the solar wind, the magnetosphere and the ionosphere.

In the numerical study of the S-M-I coupling process, numerical errors in the
low-β region near the ionosphere should be reduced. For this purpose, the MHD
calculation is reconstructed as shown in equation (29) to suppress the direct
inclusion of the potential component of the magnetic field as dependent variables.
From these situations, a dipole magnetic field is assumed as B0. S and ρ2 are
not considered in this section. The outer and inner boundaries for the simulation
are at 200 Re and 3 Re. A uniform solar wind with a speed of 350 km/sec and an
IMF magnitude of 5 nT is assumed at the upstream boundary and zero gradients
are assumed at the downstream boundary. Dependent variables are projected
along the field line from the inner boundary (3.0 Re) to the ionosphere. In the
ionosphere, equations (64) and (65) are solved to match the divergence of the
Pedersen and Hall currents with the FAC.

Figure 6 shows the response of the magnetosphere to the southward turning
of the IMF. The color figure shows the pressure distribution in the noon-midnight
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Fig. 5. Magnetospheric convection

meridian plane of the magnetosphere at three times. Where P is normalized by
the solar wind P. The bottom row illustrates the initial magnetospheric config-
uration for the northward IMF. At this time (7.7 minutes after the southward
turning of the IMF), a thick and low-pressure plasma sheet is observed. The flow
structure at this time (not shown) indicates that x line is situated beyond x =-
60 Re, which is the remnant of merging cell structure under the northward IMF
condition [4] and called the distant neutral line. The growth phase shown in the
second row (59 minutes after the southward turning of the IMF) is character-
ized by erosion of the dayside magnetosphere, thinning of the plasma sheet, and
an increase in the flaring angle. The tail-like configuration of the plasma sheet
during the growth phase is the consequence of an enhanced convection.

The substorm onset occurs as an abrupt change of the magnetospheric con-
figuration in the near-earth tail. The top row in Fig. 6 (72.6 minutes after the
southward turning of the IMF) shows the pressure distribution after the onset il-
lustrating the appearance of the high-pressure region in the inner magnetosphere
and the formation of the NENL in the midtail. Figure 6 also shows pressure and
Vx distributions along the -x axis in the near-earth and midtail regions before
and after the onset. Where Vx is normalized by the solar-wind sound velocity.
After t=70 min, a sudden change of pressure profile is seen to start just like



294 Takashi Tanaka

Fig. 6. Substorm sequence obtained from the MHD simulation

a transition from one state to another [5]. Before the onset (t<70 min), the
strongest −∇P force acts in the region between x=-10 and -20 Re. As a result,
earthward convection is obstructed at x=-14 Re. In addition, a gradual forma-
tion of NENL is seen at x=-33 Re before the onset. After the onset (t>70 min),
the peak position in the pressure distribution shows a rapid inward movement.
The pressure peek abruptly moves further inward to x=-8 Re. At the same time,
the convection flow intrudes into the inner magnetosphere inside x=-10 Re in-
creasing in magnitude. Through these transition processes, a new stress balance
is achieved in the near-earth plasma sheet in which recovered magnetic tension
is balanced by newly established pressure inside x=-10 Re. This pressure change
is, in turn, a result of energy conversion from magnetic energy to internal en-
ergy caused by the pumping effect of convection associated with the recovery of
magnetic tension. The fastest earthward flow in the plasma sheet appears after
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about 5 minutes from the onset. Then, tailward flow increases its speed. After
t=75.3 min, the NENL begins to gradually retreat downtail.

During substorms, the ionospheric conductance enhances to a large extent
due to precipitating particles which carry enhanced FACs. As a result, the cou-
pling rate between the magnetosphere and the ionosphere becomes stronger, and
the magnetosphere comes to hold a heavier load. However, the role of a variable
M-I coupling in substorm onset is not clear at the present time [5].
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Global Magnetohydrodynamic Simulation
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Abstract. High Performance Fortran (HPF) is one of modern and common techniques
to achieve high performance parallel computation. We have translated a 3-dimensional
magnetohydrodynamic (MHD) simulation code of the Earth’s magnetosphere from
VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer
and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The
entire performance and capability of the HPF MHD code could be shown to be almost
comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the
earth’s magnetosphere was performed at a speed of over 400 Gflops with an efficiency of
76.5 VPP5000/56 in vector and parallel computation that permitted comparison with
catalog values. We have concluded that fluid and MHD codes that are fully vectorized
and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA,
and a code in HPF/JA may be expected to perform comparably to the same code
written in VPP Fortran.

1 Introduction

If you want to apply modern and common techniques to achieve efficient parallel
computation, there are generally two choices of High Performance Fortran (HPF)
and Message Passing Interface (MPI). In the two methods, the advantage to use
HPF is in less efforts to translate the program. We describe how one can do it for
a MHD code and discuss related questions and practical applicable to achieve
high efficiency. We have been able to execute a 3-dimensional global magneto-
hydrodynamic (MHD) simulation of the interaction between the solar wind and
the earth’s magnetosphere in order to study the structure and dynamics of the
magnetosphere using a variety of computers to run a fully vectorized MHD code
[1]-[5]. Among the computers we have used are: CRAY Y-MP, Fujitsu VP-2600,
Hitachi S820, and NEC SX-3. This flexibility of using many different computers
allowed us to work together with many scientists in performing our computer
simulations. However, as vector parallel and massively parallel supercomputers
have come into the simulation community, a number of different approaches are
now being used [6]-[8]. Many scientists carrying out simulations have lost their
common language and are being forced to work with new dialects.

We began to use the vector parallel supercomputer, Fujitsu VPP500, in the
Computer Center of Nagoya University 1995 and have succeeded in rewriting
our 3-dimensional global MHD simulation code in VPP Fortran allowing us to
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achieve a high performance of over 17 Gflops [8],[9]. Moreover, we have used a
new supercomputer, the Fujitsu VPP5000/56, since December 1999 to achieve an
even higher performance of over 400 Gflops in VPP Fortran [8],[9],[10]. However,
the MHD code in VPP Fortran cannot achieve such a high performance using
other supercomputers such as Hitachi SR8000 and NEC SX-5. Thus we face a
difficult problem in collaborating in with other scientists in computer simulations
even at universities within Japan. We very much hope to recover the advantage
of having a common language in the supercomputer world. Recent candidates
for this common language appear to be High Performance Fortran (HPF) and
Message Passing Interface (MPI). We look forward to the time when we can use
these compilers in supercomputers.

In 1999 it was learned that some engineers in Japanese supercomputer com-
panies had tried to develop an extended version of HPF created by the Japanese
HPF Association (JAHPF) [11] for use in the new HPF compiler in the near
future. This information was of great interest because the performance of the
original HPF was questionable and we want to test its performance indepen-
dently. Since June 2000, we have had the opportunity to use HPF/JA (an ex-
tended version of HPF) with a supercomputer of the vector-parallel type, Fujitsu
VPP5000/56 [11],[12] and began to translate our 3-dimensional MHD simulation
code for the Earth’s magnetosphere from VPP Fortran to HPF/JA [4],[9],[12].
The MHD code was fully vectorized and fully parallelized in VPP Fortran [6],[8].
We successfully rewrote the code from VPP Fortran to HPF/JA in three weeks,
and an additional two weeks were required to perform a final verification of the
results of the calculations. The entire performance and capability of the HPF
MHD code are shown to be almost comparable to those of the VPP Fortran code
in typical simulations using the Fujitsu VPP5000/56 system.

2 From VPP Fortran to HPF/JA

We requested the Computer Center of Nagoya University to begin using HPF
in their supercomputer as soon as possible. In June 2000, stimulated by a lec-
ture on HPF by a Fujitsu engineer, we began to use HPF/JA on the Fujitsu
VPP5000 [11],[12]. We understood that the use of HPF was not very success-
ful in the USA and Europe, and that users would rather abandon the usage of
HPF due to its difficulty in achieving a high performance. However, we have
high expectations of HPF/JA because supercomputer companies in Japan have
had valuable experiences with compilers in operating vector-parallel machines
[8],[9]. We have decided to translate our MHD code from VPP Fortran to HPF if
we can reach 50performance of VPP Fortran using HPF. We have experience in
fully vectorizing and parallelizing several test programs and 3-dimensional global
MHD codes for the earth’s magnetosphere using VPP Fortran. Based on that
experience, we believe that we can obtain good performance by translating the
MHD codes from VPP Fortran to HPF/JA. The main points of our approach
are summarized as follows,
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(1) We can use the same domain decomposition (z-direction in 3-dimension)
as in VPP Fortran, and overlap data at the boundary of distributed data which
were handled by “sleeve” in VPP Fortran can be replaced by “shadow” and
“reflect” in HPF/JA.
(2) Parallelizing formalisms for decomposition are performed by “independent”
sentence as is done in VPP Fortran.
(3) Lump transmission of distributed data is done by “asynchronous” sentence.
(4) “Asynchronous” sentence can be used for lump transmission between the
distributed data with different directions of decomposition.
(5) Unnecessary communication, which was a problem in HPF, can be removed
by the instructions of “independent new ( )” and “on home local ( )”.
(6) Maximum and minimum can be calculated in parallel by “reduction”.

Fortran programs using VPP Fortran can be directly rewritten using HPF/JA
owing to (1)-(3) keeping their original styles. If unnecessary communication could
be completely stopped by (5), the efficiency of parallelization could be greatly
improved. We can use the instructions to stop unnecessary communication if the
calculation results don’t change with insertion of the instructions. Generally it
is very difficult for the parallel compiler to know whether the communication
is needed or not in advance because variables might be rewritten at any time.
Therefore unnecessary communication that users are not aware of frequently
happens reducing the efficiency of the parallelization. That is, the compiler just
compiles programs considering all cases; it cannot provide a good solution if
there exists any uncertain portion, and therefore unexpected and unnecessary
communication very often occurs in the execution of a program.

We can succeed in parallelization of the MHD program even in the worst
case because the high speed alternation in the directions of decomposition by
(4) can solve almost all the difficulties of parallelization in the MHD program,
e.g. in the treatment of boundary conditions. We were able to fully parallelize
our MHD code by using the function of alternative decomposition when we used
Matsusita Electric Co. ADETRAN compiler. We obtained an efficiency of par-
allelization over 85computer with 256 processors. Moreover, we could execute
parallel computation in maximum, minimum and summation by using a “reduc-
tion” sentence in HPF/JA. Because we had high expectations for translating
programs from VPP Fortran to HPF/JA, we soon began to rewrite several test
programs as well as the 3-dimensional MHD code.

3 Practical Aspects of Translation from VPP Fortran
to HPF/JA

The 3-dimensional global MHD simulation code for the interaction between the
solar wind and the earth’s magnetosphere solves the MHD and Maxwell’s equa-
tions in 3-dimensional Cartesian coordinates (x,y,z) as an initial and boundary
value problem using a modified leap-frog method [4]. The normalized MHD
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equations used in the simulation are written as follows:

∂ρ

∂t
= −∇ · (vρ) +D∇2ρ

∂v
∂t

= −(v · ∇)v − 1
ρ
∇p+

1
ρ
J×B + g +

1
ρ
Φ

∂p

∂t
= −(v · ∇)p− γp∇ · v +Dp∇2p

∂B
∂t

= ∇× (v ×B) + η∇2B

J = ∇× (B−Bd)

where ρ is the plasma density, v is the flow velocity, p is the plasma pressure,
B is the magnetic field, B is the magnetic field, J is the current density, g is
the gravity force, Φ ≡ μp∇2v is the viscosity, γ = 5/3 is the ratio of specific
heats, η = η0(T/T0)−3/2 is the resistivity, T = p/ρ is the temperature, T0 is the
ionospheric temperature, and Bd is the dipole magnetic field. Typical numerical
values are η0 = 0.01 and μ/ρsw. Hence the typical magnetic Reynolds number is
S = τη/τA = 100 − 2000. Here, the subscript sw indicates the quantities in the
solar wind. The MHD quantities are decomposed in the z direction as in VPP
Fortran. The MHD code, which is fully vectorized and fully parallelized in VPP
Fortran, was translated from VPP Fortran to HPF/JA. We summarize below
some key points involved in that translation.

To begin with, there is no concept of the global variables in VPP Fortran and
also “equivalence” sentence to connect the global variables with local variables
cannot be used in HPF/JA. To vectorize for inner do loops and to parallelize
for outer do loops is the same in HPF/JA as in VPP Fortran. The efficiency of
parallelization increases when the outer do loops are combined in wider range. A
part of the 3-dimensional MHD code translated from VPP Fortran to HPF/JA
is shown as an example in this section and the MHD code with the complete
boundary condition in HPF/JA is seen on a Web page whose address will be
shown later in this text. A domain decomposition in the z direction is used and
overlap data distributed among PEs are handled by “shadow” and “reflect” in
HPF/JA.

Example of our 3-dimensional MHD code translated from VPP Fortran to
HPF/JA

parameter (npe=16)
!hpf$ processors pe(npe)

parameter (nx=500,ny=200,nz=400,nxp=150)
parameter(n1=nx+2,n2=n1*(ny+2),n3=n2*(nz+2))
parameter(nb=8,nbb=11,n4=n3*nb,n5=n3*nbb,

1 n6=n3*18)
c

dimension f(nx2,ny2,nz2,nb),u(nx2,ny2,nz2,nb),
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1 ff(nx2,ny2,nz2,nb),p(nx2,ny2,nz2,nbb),
2 pp(nx2,ny2,nz2,3),fdd(mfd,nfd)

c
!hpf$ distribute f(*,*,block,*) onto pe
!hpf$ distribute u(*,*,block,*) onto pe
!hpf$ distribute pp(*,*,block,*) onto pe
!hpf$ distribute ff(*,*,block,*) onto pe
!hpf$ distribute p(*,*,block,*) onto pe
!hpf$ shadow f(0,0,1:1,0)
!hpf$ shadow u(0,0,1:1,0)
!hpf$ shadow pp(0,0,1:1,0)
!hpf$ shadow ff(0,0,1:1,0)
!hpf$ shadow p(0,0,1:1,0)
!hpf$ asyncid id1
c

do 410 ii=1,itap
do 174 m=1,nb
do 174 k=1,nz2
read(10) f(1:nx2,1:ny2,k,m)

174 continue
410 continue

c
do 100 ii=1,last

c boundary condition at nz=1 and nz=nz2
xx4=0.5*hx*float(2*nxp-nx1-2)
xx3=hhx(nx1)+xx4

c
!hpf$ independent,new(i,j,k,m)

do 31 k=1,nz2
!hpf$ on home(f(:,:,k,:)),local(f,i,j,m,x,xx,xx3,xx4,
!hpf$* hhx) begin

do 30 m=1,nb
if(k.eq.1) then
do 311 j=2,ny1
f(2,j,1,m)=f(1,j,2,m)
do 311 i=3,nx1
x=hhx(i)+xx4
x=1.0-x/xx3
x=amin1(x,1.0)
x=1.0+x/3.0
xx=1.0-x
f(i,j,1,m)=x*f(i-1,j,2,m)+xx*f(i-2,j,3,m)

311 continue
else if(k.eq.nz2) then
do 312 j=2,ny1
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f(2,j,nz2,m)=f(1,j,nz1,m)
do 312 i=3,nx1
x=hhx(i)+xx4
x=amin1(x,1.0)
x=1.0+x/3.0
xx=1.0-x
f(i,j,nz2,m)=x*f(i-1,j,nz1,m)+xx*f(i-2,j,nz,m)

312 continue
end if

30 continue
!hpf$ end on

31 continue
c
!hpf$ asynchronous(id1),nobuffer begin

f(2:nx1,1,nz2:1:-1,1:nb) = f(2:nx1,2,1:nz2,1:nb)
!hpf$ end asynchronous
!hpf$ asyncwait(id1)
c
!hpf$ reflect f
c
c first step
c step of k=k
!hpf$ independent,new(i,j,k)

do 90 k=1,nz1
!hpf$ on home(u(:,:,k,:)),local(f,u,p,pp,ff,i,j,m,
!hpf$* x,y,z,hx,hy,hz,xx4,hhx,ar2,
!hpf$* ro2,ro3,dx1,dy1,dz1,gam,eud,gra,ar1,
!hpf$* uxd,x1,x2,x3,x5,y1,y5,ro02,pr02,vmax)
!hpf$* begin
c
c current

do 38 j=1,ny1
do 38 i=1,nx1
p(i,j,k,11)=0.25*((f(i+1,j+1,k+1,7)+f(i+1,j,k+1,7)

1 +f(i+1,j+1,k,7)+f(i+1,j,k,7)-f(i,j+1,k+1,7)
2 -f(i,j,k+1,7)-f(i,j+1,k,7)-f(i,j,k,7))/hx
3 -(f(i+1,j+1,k+1,6)-f(i+1,j,k+1,6)+f(i+1,j+1,k,6)-
4 f(i+1,j,k,6)+f(i,j+1,k+1,6)-f(i,j,k+1,6)
5 +f(i,j+1,k,6)-f(i,j,k,6))/hy)

c
!hpf$ end on

90 continue
c

do 173 m=1,nb
do 173 k=1,nz2
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write(ntap) f(1:nx2,1:ny2,k,m)
173 continue

c

In the MHD code, all the necessary variables, which appear in the do loop for
parallelization, are indicated in the on home(u(:,:,k,:)),local( ) sentence in order
to prevent unnecessary communication between PEs (Processing Elements) and
to vectorize in the inner do loops. Otherwise, the inner do loops cannot be
vectorized. If the inner do loops are not vectorized, we decompose the do loop for
parallelization into small do loops and try again to find missing variables in the
on home( ), local( ) sentence. It is not difficult to find all the necessary variables
in small do loops for parallelization. After the full vectorization is confirmed in
each of do loops for parallelization, we combine them to form a wider single do
loop for parallelization to obtain higher efficiency. Thus we can accomplish a
complete translation of the MHD code from VPP Fortran to HPF/JA

In VPP Fortran, global and local variables are defined and the two variables
are linked by “equivalence” sentence as follows,

!xocl index partition ind=(pe,index=1:nz2,part=band)
!xocl index partition indo=(pe,index=1:nz2,part=band,

overlap=(1,1))
dimension f(nx2,ny2,nz2,nb),u(nx2,ny2,nz2,nb),

1 ff(nx2,ny2,nz2,nb),p(nx2,ny2,nz2,nbb),
2 pp(nx2,ny2,nz2,3)
dimension gf(nx2,ny2,nz2,nb),gu(nx2,ny2,nz2,nb),

1 gff(nx2,ny2,nz2,nb),gpp(nx2,ny2,nz2,3)
!xocl local f(:,:,/indo,:),u(:,:,/indo,:),pp(:,:,/indo,:)
!xocl local ff(:,:,/indo,:),p(:,:,/indo,:)
!xocl global gf,gu,gff,gpp

equivalence (gf,f),(gff,ff),(gu,u),(gpp,pp)
common /blk/gf,gpp

c
!xocl overlapfix(f,u) (id)
!xocl movewait (id)
c
c first step
c step of k=k
!xocl spread do /ind

do 90 k=1,nz1
c

90 continue
!xocl end spread

The overlap data at the boundary of distributed data are handled by “sleeve”
function in VPP Fortran, which are composed of “index partition” and “over-
lapfix” sentences. The local variables are used for all the computation and the
corresponding global variables are used only in read and write sentences. How-
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ever, there is no concept of global variables in HPF and “equivalence” sentence
cannot be used. Therefore, we need to prepare a new array for input/output,
and lump transmission of distributed data is done for the new array by “asyn-
chronous” sentence. Then we can use the new array for read and write sentences
without format, and in doing so retaining a high speed. Of course, the program
size increases for the new array. It is noted that lump transmission by “asyn-
chronous” sentence must be used to transfer the distributed data; otherwise it
often takes an extremely long time for data transfer. “Asynchronous” sentence
has another function to allow lump data transfer of the distributed data with
different directions of decomposition. In an example of the final version trans-
lated from VPP Fortran to HPF/JA, the unformatted read and write sentences
are used for a part of large array of distributed data without arranging a new
array.

4 Comparison of Processing Capability
Using VPP Fortran and HPF/JA

Our aim was to translate the 3-dimensional global MHD code simulating the
interaction between the solar wind and the earth’s magnetosphere from VPP
Fortran to HPF/JA and to achieve an efficiency more than 50[5]-[7]. In the
global MHD simulation, the MHD and Maxwell’s equations are solved by the
modified leap-frog method as an initial value and boundary value problem to
study the response of the magnetosphere to variations of the solar wind and
the interplanetary magnetic field (IMF) [4],[5]. Because the external boundary
is put in a distant region to minimize its influence on the boundary condition
and the tail boundary is extended to permit examination of the structure of the
distant tail, higher spatial resolution is required to obtain numerically accurate
results. Therefore, the number of 3-dimensional grid points was increased up
to the maximum limit of the computer system. Examples of MHD simulations
of the solar wind-magnetosphere interaction are shown in Figs. 1 and 2 [5],[7].
Figure 1 shows the 3-dimensional structure of magnetic field lines under steady
state conditions for the earth’s magnetosphere when the IMF is northward and
duskward. A dawn -dusk asymmetry appears in the structure of magnetic field
lines because magnetic reconnection at the magnetopause occurs in the high
latitude tail on the dusk side in the northern hemisphere and on the dawn side in
the southern hemisphere. Figure 2 shows a snapshot of the earth’s magnetosphere
obtained by a 3-dimensional global MHD simulation at a time when the ACE
satellite is monitoring the upstream solar wind and IMF every 1 minute. These
data were used as input to the simulation. This simulation represents one of
the fundamental studies in the international space weatherindexspace weather
program designed to develop numerical models and to understand the variations
in the solar-terrestrial environment from moment to moment. It requires 50-
300 hours of computation time to carry out these 3-dimensional global MHD
simulations of the earth’s magnetosphere for 25-150 hours of real time data
even using 16PEs of the Fujitsu VPP5000/56.
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Fig. 1. Structure of 3-dimensional magnetic field lines for steady state conditions in
the earth’s magnetosphere and an interplanetary magnetic field which is northward
and duskward. An asymmetry appears in the magnetosphere due to the occurrence of
magnetic reconnection on the dusk side in the northern hemisphere and on the dawn
side in the southern hemisphere near the magnetopause.

Table 1 shows the comparison of the processing capabilities of VPP Fortran
and HPF/JA for the 3-dimensional global MHD code describing the solar wind-
magnetosphere interaction run on the Fujitsu VPP5000/56. Both the Fortran
codes are fully vectorized and fully parallelized, and are adjusted to reach the
maximum performance using the results of several test runs applying practical
simulations. The table includes the number of PEs, 3-dimensional grid points
(except for the boundary), CPU time (sec) to execute and advance of one time
step, computation speed (Gflops) and computation speed per PE (Gflops/PE)
for both VPP Fortran and HPF/JA.

The characteristics of the Fujitsu VPP5000/56 in the Computer Center of
Nagoya University are as follows,

Number of PEs: 56 PE
Theoretical maximum speed of PE: 9.6 Gflops
Maximum memory capacity per PE for users: 7.5 GB

As is known from Amdahl’s law, it is quite important to fully vectorize for
all inner do loops and to fully parallelize for all outer do loops in order to in-
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Fig. 2. Examples of snapshots of the earth’s magnetosphere obtained by 3-dimensional
global MHD simulation, when the observational data of the solar wind and interplane-
tary magnetic field obtained by the ACE satellite were used as input for the simulation.

crease the efficiency of the vectorization and parallelization performance. The
efficiency would be quite low if even only one do loop could not be vectorized
or parallelized. Users can achieve excellent computational performance if they
can succeed in vectorizing or parallelizing the last do loop. In the 3-dimensional
MHD simulation, the number of grid points is given by nx*ny*nz, decomposition
of distributed data is taken in z-direction and the size of the array in z-direction
becomes nz2=nz+2. Therefore, it is desirable that the array size in the direc-
tion of decomposition, nz2 is chosen to be an integer times the number of PEs.
Moreover, the efficiency of vectorization and parallelization becomes better as an
number of jobs (viz. the number of grid points nx*ny*nz) increases. The compu-
tational results for the scalar mode and for the vector mode with only 1PE are
also shown in the Table for the sake of comparison with parallel computation.
The meaning of this Table can be easily understood if we look at it from that
point of view.

It should be noted from the Table that the vector mode with 1PE is about 40
times faster than the scalar mode and that computational speed of HPF/JA is
almost comparable to that of VPP Fortran. Furthermore, the scalability of par-
allel computation is well satisfied given that the computation speed is roughly
proportional to the number of PEs. However, when we look at the Table in
more detail, it is noted that it was not suitable to choose the grid number to be
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Table 1. Comparison of processing capabilities of VPP Fortran and HPF/JA in a
3-dimensional global MHD code for the solar wind-magnetosphere interaction using a
Fujitsu VPP5000/56.

Number Number VPP Fortran HPF/JA
of PE of grids cpu time Gflops Gf/PE cpu time Gflops Gf/PE

1PE 200x100x478 119.607 ( 0.17) 0.17 (scalar)
1PE 200x100x478 2.967 ( 6.88) 6.88 3.002 ( 6.80) 6.80
2PE 200x100x478 1.458 ( 14.01) 7.00 1.535 ( 13.30) 6.65
4PE 200x100x478 0.721 ( 28.32) 7.08 0.761 ( 26.85) 6.71
8PE 200x100x478 0.365 ( 55.89) 6.99 0.386 ( 52.92) 6.62

16PE 200x100x478 0.205 ( 99.38) 6.21 0.219 ( 93.39) 5.84
32PE 200x100x478 0.107 (191.23) 5.98 0.110 (186.13) 5.82
48PE 200x100x478 0.069 (297.96) 6.21 0.074 (276.96) 5.77
56PE 200x100x478 0.064 (319.53) 5.71 0.068 (299.27) 5.34

1PE 500x100x200 2.691 ( 7.94) 7.94 2.691 ( 7.94) 7.94
2PE 500x100x200 1.381 ( 15.47) 7.73 1.390 ( 15.37) 7.68
4PE 500x100x200 0.715 ( 29.97) 7.47 0.712 ( 29.99) 7.50
8PE 500x100x200 0.398 ( 53.65) 6.71 0.393 ( 54.38) 6.80

16PE 500x100x200 0.210 (101.87) 6.37 0.202 (105.74) 6.61
32PE 500x100x200 0.131 (163.55) 5.11 0.120 (175.50) 5.48
48PE 500x100x200 0.100 (214.48) 4.46 0.091 (231.69) 4.82
56PE 500x100x200 0.089 (239.48) 4.28 0.086 (244.85) 4.37

4PE 800x200x670 7.618 ( 30.06) 7.52 8.001 ( 28.62) 7.16
8PE 800x200x670 3.794 ( 60.36) 7.54 3.962 ( 57.81) 7.23

12PE 800x200x670 2.806 ( 81.61) 6.80 3.005 ( 76.21) 6.35
16PE 800x200x670 1.924 (119.00) 7.44 2.012 (113.85) 7.12
24PE 800x200x670 1.308 (175.10) 7.30 1.360 (168.44) 7.02
32PE 800x200x670 0.979 (233.85) 7.31 1.032 (221.88) 6.93
48PE 800x200x670 0.682 (335.62) 6.99 0.721 (317.80) 6.62
56PE 800x200x670 0.595 (384.61) 6.87 0.628 (364.87) 6.52

16PE 1000x500x1118 9.668 (123.52) 7.72 9.619 (125.50) 7.84
32PE 1000x500x1118 5.044 (236.73) 7.40 4.992 (241.83) 7.56
48PE 1000x500x1118 3.550 (336.40) 7.01 3.479 (346.97) 7.23
56PE 1000x500x1118 2.985 (400.04) 7.14 2.935 (411.36) 7.35
32PE 1000x1000x1118 9.979 (239.33) 7.48 9.813 (243.37) 7.61
48PE 1000x1000x1118 7.177 (332.79) 6.93 7.028 (339.85) 7.08
56PE 1000x1000x1118 5.817 (410.55) 7.33 5.794 (412.23) 7.36

: Gflops is an estimated value for comparison with a computation
by 1 processor of a CRAY Y-MP C90

nx*ny*nz=500*100*200 as used in the previous simulation for parallel computa-
tion. This is because the ratio of the number of array variables in the direction
of decomposition (nz2=202=101*2) to the number of PEs is not normally an
integer. This follows from the fact that the computation speed increases, but is
lower than the speed expected from linear proportionality to the number of PEs.
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The scalability is greatly improved when we choose the number of grid points
as nx*ny*nz=200*100*478 (nz2=480=2**5*3*5) and 800*200*670 (nz2=672=
2**5*3*7) in the MHD simulation. Furthermore we achieved a rather high per-
formance exceeding 400 Gflops in both cases of VPP Fortran and HPF/JA when
we chose a large number of grid points given by nx*ny*nz=1000*500*1118 and
1000*1000*1118. This is because nz2 is an integer times the number of PEs and
also the program size of MHD code became larger. These results clearly show
that a 3-dimensional global MHD simulation of the earth’s magnetosphere can
be performed at a speed of over 400 Gflops with an efficiency of 76.5vector and
parallel computation that permitted comparison with catalog values.

Concrete examples of the MHD codes translated from VPP Fortran to
HPF/JA are not shown in the present paper, however a part of the boundary
condition in the HPF/JA MHD code and a test program of the 3-dimensional
wave equation can been seen on a Web page which will be shown later.

Some important and general points in using the HPF/JA in Fujitsu VPP5000
are as follows:

The first point refers to the local sentence. If all the parameters are removed
in local sentence of “on home local( )”, it is equivalent to arranging all the vari-
ables and array from “begin” to “end on” to be completely written in the local
sentence. Therefore it is convenient to use the function in the “do loop” sentence
for the fully vectorized and fully parallelized “do loop” in the VPP Fortran pro-
gram. The second point refers to read and write sentences. If distributed array
data are not very numerous, it is convenient to use unformatted read and write
sentences such as

write(*,100) a,b,c
write(10) a,b,c

which is simple description and for which the execution time is not long.
Moreover, we can also use the following unformatted read and write sentences
for a part of large array of distributed data without arranging a new array.

do 174 m=1,nb
do 174 k=1,nz2
read(10) f(1:nx2,1:ny2,k,m)

174 continue

do 176 m=1,nb
do 176 k=1,nz2
write(ntap) f(1:nx2,1:ny2,k,m)

176 continue

This method does not require any increase of the program size in input and
output for a large array of distributed data and the execution time is almost
comparable to that a newly arranged array is prepared to use a copy function
by asynchronous sentence. Therefore, we can keep the program size of HPF/JA,
where “equivalence” sentence cannot be used to link global and local variables,
the same as for VPP Fortran.
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5 Development of MHD Simulation

Since 2 and 3-dimensional global MHD simulations of the interaction between
the solar wind and the earth’s magnetosphere have been carried out over the
past 20 years [1]-[6],[13],[14], it is useful to present a short history of their de-
velopment and evaluate their future. Figure 3 shows a summary plot of the 2
and 3-dimensional global MHD simulations indicating how many grid points
were used as the years went by. In this figure, the black circles and triangles
show the MHD simulations carried out by other groups, while the white ones
and crosses show the MHD simulations carried out by our group. We began the
3-dimensional MHD simulations to study MHD instabilities in toroidal plasmas
using small number of grid points (given by 18*18*12 and 26*26*18 including

Fig. 3. Development of 2 and 3-dimensional MHD simulations as quantified by the
total number of grid points used; the total number of grid points has increased 4 fold
every 3 years or 10 fold every 5 years.
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the boundary) in 1976 [13],[14]. However, the MHD simulations required about
50-200 hours of computing time using Fujitsu M-100 and M-200 computers. The
execution of such large scale MHD simulations was practically limited by speed
of the computers at that time.

We began a global MHD simulation of the earth’s magnetosphere using a
larger number of grid points (given by 62*32*32 and 50*50*26, including the
boundary) using a CRAY-1 in 1982 [1]-[3], when the memory of CRAY-1 of
1MW limited the scale of the MHD simulation. At that time, we considered how
many interesting simulations could be executed if 100 cube grid points could
be used. The Japanese supercomputers subsequently appeared, and we could
carry out the MHD simulations with 100 cube grid points using Fujitsu VP-100,
VP-200 and VP-2600 machines. Later, we had anopportunity to use the Fujitsu
VPP500 vector parallel machine in 1995 and began to use the VPP5000 machine
in 2000; this practically allowed us to carry out the MHD simulation with 1000
cube grid points. When we look at the development of the MHD simulations
from the point of view of the number of grid points used over those 24 years, we
can recognize the pattern of a 4 fold increase every 3 years or a 10 fold increase
every 5 years.

Figure 4 shows the computation time for an advance of one time step which
is needed to execute the MHD simulation, while Fig. 5 shows the capacity of the

Fig. 4. Comparison of computation times corresponding to an advance of one time
step versus total number of grid points in the MHD simulation codes.
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Fig. 5. Comparison of total capacity of the necessary memory versus total number of
grid points in the MHD simulation codes.

computer memory which is needed to execute the MHD simulation along with
the total number of grid points.

The computation time and capacity generally depend of the kind of com-
puter and numerical methods, and the computation time becomes longer and
the required computer memory increases in linear proportion to the number of
total grid points. Since the global MHD simulation of the earth’s magnetosphere
requires repetitive calculations from several thousand to tens of thousands times
the one time step advance, it is necessary to make the computation time of one
time step advance less than 10 seconds in order to carry out practical MHD
simulations [5],[6],[8]. Thus, the number of usable grid points is automatically
limited in MHD simulations by the speed of the computer. At the same time,
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the program size for MHD simulations with the chosen number of grid points
must be less than size of the computer memory.

Since the time evolution of 8 physical components (i.e. the density, 3 com-
ponents of velocity, plasma pressure and 3 components of magnetic field) is
calculated in the MHD code, the number of independent variables is 8 Ng and
the capacity is 32 Ng Bytes in single precision variables, where Ng is the total
number of grid points. Therefore, the key variables in the MHD code are 32 Ng
Bytes using the 2 step Lax-Wendroff method (2LW) and 64 Ng Bytes using the
modified Leap-Frog method (MLF) because the MHD quantities must be stored
for two consecutive time steps. The 3-dimensional global MHD code which was
originally developed for the CRAY-1 and has been used by other vector ma-
chines requires only 1.3 times the capacity to store the MHD key variables for
a 1-dimensional array in order to effectively decrease the work area. It becomes
impossible to effectively decrease the work area for parallel computers, as a result
the program size increases considerably in parallel machines such as ADENART,
VPP500 and VPP5000.

However, the required memory in VPP500 and VPP5000 is 2.5 times the
available memory of the computer to store the key variables (160 Ng
= 2.5 ∗ 64 Ng) in MLF. If the dependence on required memory for the total
grid number could be concretely demonstrated, we could easily estimate how
large an MHD simulation could be executed to study specified subjects and
could establish more precisely the prospects for the future.

Figure 6 shows a comparison of the computer processing capability with
the total grid number in MHD simulations. Rapid progress has been made in
increasing performance by moving from vector machines to vector parallel ma-
chines. Newer high performance workstations and personal computers have the
capability of older supercomputers (speed of about 0.3 Gflops). However, the
processing capability of high end supercomputers is still about a thousand times
higher than that of other computers at all times. Moreover, definitive differences
between supercomputers and other computers appear in the shortage of main
memory and cache required to carry out MHD simulations with a large number
of grid points. It is practically impossible to execute a 3-dimensional MHD simu-
lation code using workstations and personal computers when the fully vectorized
and fully parallelized MHD code would need CPU times of 100 hours using a
supercomputer such as the Fujitsu VPP5000. It is nowadays necessary to use
a supercomputer with a maximum performance capability in studies involving
3-dimensional global MHD simulations of the earth’s magnetosphere.

6 Conclusions

We have carried out a 3-dimensional global magnetohydrodynamic (MHD) simu-
lation of the interaction between the solar wind and the earth’s magnetosphere on
a variety of computers using a fully vectorized MHD code. However, simulation
scientists have lost their common language with the appearance of vector parallel
and massive parallel supercomputers. We sincerely hope to see the development
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Fig. 6. Comparison of the processing capability versus total number of grid points in
the MHD simulation codes.

of a common language in the supercomputer world. The candidates appear to
be High Performance Fortran (HPF) and Message Passing Interface (MPI). We
look forward to the time when we can use these compilers in supercomputers.
We have had the opportunity to use HPF/JA with the Fujitsu VPP5000/56
supercomputer in the Computer Center of Nagoya University since June 2000.
We translated our 3-dimensional MHD simulation code for the solar-terrestrial
interaction from VPP Fortran to HPF/JA and the code was fully vectorized and
fully parallelized in VPP Fortran. The performance of the HPF MHD code was
almost comparable to that of the VPP Fortran in a typical simulation using a
large number (56) of Processing Elements (PEs). We have reached the conclu-
sion that fluid and MHD codes that are fully vectorized and fully parallelized
in VPP Fortran can be relatively easily translated to HPF/JA, and a code in
HPF/JA can be expected to achieve comparable performance to one written in
VPP Fortran.

The 3-dimensional global MHD simulation code for the earth’s magneto-
sphere solves the MHD and Maxwell’s equations in 3-dimensional Cartesian co-
ordinates (x, y, z) as an initial and boundary value problem using a modified
leap-frog method. The MHD quantities are distributed in the z direction. The
quantities in the neighboring grids can be calculated by the HPF/JA instruction
sentences “shadow” and “reflect” when they exist in another PE. Unnecessary
communication among PEs can be completely avoided by the instructions “in-
dependent, new,” and “on home, local.” Moreover, lump transmission of data
is used in the calculation of the boundary conditions by the instruction “asyn-
chronous.” It was not necessary to change the fundamental structure of the MHD



MHD Simulation Using HPF 313

code in the translation procedure. This was a big advantage in translating the
MHD code from VPP Fortran to HPF/JA.

Based on this experience, it is anticipated that we will find little difficulty
in translating programs from VPP Fortran to HPF/JA, and we can expect an
almost comparable performance on the Fujitsu VPP5000. The maximum speed
of the 3-dimensional MHD code was over 230 Gflops for 32 PEs and over 400
Gflops for 56 PEs. We hope that the MHD code rewritten in HPF/JA can be
executed on other supercomputers such as the Hitachi SR8000 and the NEC SX-
5 in near future and that HPF/JA becomes a useful common language in the
supercomputer world. We believe that this is a necessary condition to restart a
new and higher level of collaborative research on 3-dimensional global MHD sim-
ulation of the magnetosphere with other scientists around the world and expect
to see efforts by simulation scientists as well as by the Japanese supercomputer
companies to reach this goal.

We have made available a part of the boundary condition in the HPF/JA
MHD code and a test program of the 3-dimensional wave equation at the fol-
lowing Web address:

http://gedas.stelab.nagoya-u.ac.jp/ simulation/hpfja/hpf01.html.
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of Turbulence – A Tutorial
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Abstract. The analysis of plasma turbulence has traditionally relied on limited reper-
toire of methods such as Fourier analysis, correlation analysis, etc. This text gives a
short overview of what deeper insight can be obtained by using techniques that exploit
nonlinear properties of the data. It covers both higher order spectra and higher order
statistics.

1 Linear vs Nonlinear World

Although linear descriptions traditionally constitute a rule of conduct in the
analysis of space plasma data, there is quite some evidence that nonlinear de-
scriptions may provide considerable added value. Linear descriptions can all be
cast within the single convenient framework of Fourier analysis, which includes
well known quantities such as power spectra and autocorrelation functions. There
is no such single framework, however, for making nonlinear descriptions. A key
problem in nonlinear world therefore is the choice of the right technique, or
equivalently, the right invariant. Physical guidance and a good understanding of
what the model produces are a must.

The repertoire of techniques for analysing nonlinear phenomena is huge and
increases by the day, see for example [1,36,61]. Most of the texts on turbulence
are essentially devoted to neutral fluids only [49,44,26,9]. As it turns out, only
a subset of these techniques is really relevant for space plasma applications. By
relevant we mean that a clear physical interpretation can be given to the output,
and a compatibility between the underlying assumptions and properties of the
model (or the observations).

Several applications to problems encountered in space plasmas can never-
theless be found in [24,28,22,75,76]. Most of them deal with experimental data,
but the extension to simulation data is immediate. Significant advantages of the
latter are generally a smaller noise level, a more flexible size of the dataset and
the possibility to access quantities that cannot always be measured. If simula-
tion data have received comparatively less attention so far, it is not by lack of
relevance, but often because we simply don’t know yet how to properly handle
large ensembles of multivariate data !

There exist essentially three major families of techniques for analysing tur-
bulence, all of which are rooted in the theory of statistics and that of dynamical
systems. They are respectively:

J. Büchner, C.T. Dum, M. Scholer (Eds.): LNP 615, pp. 315–343, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Higher order spectra (Sect. 2), which are a generalization of Fourier analysis
to include information about phase coherence. This approach is particularly
relevant for wave phenomena that weakly depart from nonlinearity. Typical
applications are: nonlinear wave interactions, wave-particle interactions, weak
turbulence, etc.

Higher order statistics (Sect. 3), although closely related to higher order
spectra, are more generally applied to stochastic processes, regardless of the
degree of nonlinearity. Typical applications are fully developed turbulence,
fluctuations in complex systems, etc.

Phase space techniques is the name given to techniques that are generally
applied to chaotic systems, whose time evolution can be approximated with
a low-dimensional deterministic model. Such systems are not generic in space
plasmas but the concepts that have been developed in this framework are
powerful and deserve attention. Two recent textbooks are [36,9].

Phase space methods will not be considered here because would require a
textbook on their own. Our selection is therefore somewhat arbitrary, even more
so since the same concept can often be found in more than one family.

The domain of application of each family can be characterized by comparing
the degrees of stochasticity (how much is the dynamics ruled by external noise
terms? ) and nonlinearity (how nonlinear is the process? ), see Fig. 1.

Notice how the applicability of each technique is usually confined to a neigh-
bourhood around some hypothesis. One could of course add more dimensions
to the plot by introducing the extension (is the process temporal or spatio-
temporal? ), the number of degrees of freedom, etc.
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Fig. 1. Sketch of the variety of systems spanned by the properties “nonlinearity” and
“stochasticity”. Besides the two main families that are described in this text, there
exist many other techniques based for example on linear oscillations (a), nonlinear
Fourier transforms for solitary waves (b), hidden Markov models (c), and stochastic
linear models (d). Sketch made after a figure from [61].
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2 Higher-Order Spectra and Spectral Energy Transfers

One of the most obvious approaches for making the transition from a linear to a
nonlinear description, is to start from a linear description of the system of inter-
est, and subsequently introduce a weak nonlinearity. How far this perturbative
approach can be extended to strongly nonlinear systems depends on the type of
problem one is addressing.

Since one starts with a linear description, it is appropriate to describe the
system in terms of its eigenmodes, namely Fourier modes. The basic assumption
underlying standard Fourier analysis is that any stationary fluctuating physical
quantity can be regarded as the superposition of statistically independent Fourier
modes. Accordingly, all the relevant information is contained in the amplitude
of these modes only, that is, the power spectral density (or alternatively, the
autocorrelation function). If, however, there exists some parametrical or nonlin-
ear physical process, then the phases of the Fourier modes are not independent
anymore, and information is also conveyed by the phases. Higher order spectra1

provide a means for characterizing such phase coherence [48,53,40].

2.1 Why Higher Order Spectra?

Let us start from an example with magnetic field data measured by the AMPTE
UKS spacecraft just upstream the Earth’s quasiparallel bow shock (see [20] for
more details). In this dataset, the turbulent wavefield is characterized by the
occasional occurrence of large-amplitude structures that are preceded at their
upstream edge by whistler wavetrains, see Fig. 2. Two questions arise: 1) is there
a causal relationship between the whistler waves and the large structures? 2) If
such a coupling exists, are whistlers just instabilities that are triggered by the
large structures or do they actually grow out of them? Higher order spectra can
answer the first question, and spectral energy transfers the second.

Higher order spectra are usually defined in the field of signal processing,
using cumulants [11]. Two applications to laboratory plasma experiments can
be found in [37,68]. Let us start with a nonlinear system, whose dynamics is a
function of time t and space x, and is described by the generic model

∂u(x, t)
∂x

= f(u(x, t)) , (1)

where f(·) is a continuous nonlinear and time-independent function, and u(x, t)
is the physical quantity of interest2. We shall henceforth assume that u(t) is
stationary in time and has zero mean. By analogy with Taylor series let us
decompose f into a series of linear, quadratic, cubic, and higher order functions

f(u) = f1(u) + f2(u) + f3(u) + · · · (2)
1 higher order spectra are also called polyspectra or multispectra
2 the spatial derivative is used here for notational convenience; one could switch time

and space.
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Fig. 2. Excerpt of the AMPTE magnetic field data: modulus of the magnetic field
(top) and component along direction of maximum variance (bottom).

.

so that fk(λu) = λkf(u). In a weakly nonlinear system, f1(u) is the term that
rules the dynamics. Wiener has shown that with mild assumptions, eq. 2 can be
written as a Volterra series.

∂u(x, t)
∂x

=
∫
g(τ1) : u(x, t− τ1) : dτ1 (3)

+
∫∫

g(τ1, τ2) : u(x, t− τ1) u(x, t− τ2) : dτ1 : dτ2

+
∫∫∫

g(τ1, τ2, τ3) u(x, t− τ1) : u(x, t− τ2) : u(x, t− τ3) dτ1 : dτ2 : dτ3

+ · · ·
As we shall see later, each term can be ascribed to a different physical process.
Let us now take the discrete Fourier transform in time of this series, with the
notation up = u(x, ωp):

∂up

∂x
= Γpup +

∑
k,l

Γkl ukul δk+l,p +
∑
k,l,m

Γklm ukulum δk+l+m,p + · · · (4)

where δk,l is the Dirac delta function. Note how the nonlinearity couples each
Fourier mode uk to all other modes. This coupling can only occur in a specific
way: for quadratic nonlinearities (terms with the Γkl kernels), the resonance
condition for interacting Fourier modes reads

ωk + ωl = ωp , (5)

whereas for cubic nonlinearities we must have

ωk + ωl + ωm = ωp . (6)



Techniques for Turbulence Analysis 319

Frequencies can be both positive and negative, so for example ωk + ωl − ωp = 0
could be rewritten as ωk + ωl = ωp

A major asset of this description is the existence of analytical expressions
and consequently the possibility to interpret the Volterra kernels Γ in terms of
physical processes. Much work has been done in the framework of Hamiltonian
systems [78] and several applications to weak plasma turbulence have been re-
ported in [35,50]. With some additional assumptions, even the description of
strong plasma turbulence can be considered, see [33].

Volterra series may in principle contain an infinite number of terms, but in
many applications (and by definition in all weakly nonlinear systems) only low
order terms are significant. The quadratic Volterra kernel Γkl describes three-
wave interactions because three different Fourier modes are involved in the res-
onance condition ωk +ωl = ωp. Two examples of such interactions are harmonic
generation (the fundamental gives rise to a first harmonic) and the decay insta-
bility (a Langmuir wave decays into another Langmuir wave and an ion sound
wave). In the same way, the cubic kernel Γklm describes four-wave interactions.
The modulational instability is example of a four-wave interaction, in which a
Langmuir wave decays into two other Langmuir waves plus a low-frequency ion
sound wave.

2.2 Defining Higher Order Spectra

Volterra kernels Γ embody all the information about the nonlinear dynamics of
a process and so they should be the prime quantities of interest. One can readily
see, however, that their estimation necessitates data with both good sampling in
space and in time. Two other quantities called higher order spectra and energy
transfer functions are often preferred, because they can be obtained at lower
cost.

Let us first multiply eq. 4 by u∗p and calculate its expectation3. The following
series results

〈∂up

∂x
u∗p〉 = Γp〈|up|2〉+

∑
k+l=p

Γkl〈ukulu
∗
k+l〉+

∑
k+l+m=p

Γklm〈ukulumu
∗
k+l+m〉+· · ·

(7)
In a homogeneous plasma the left term vanishes, and so the amplitude 〈|up|2〉
is not an invariant quantity anymore. This quantity is nothing but the power
spectrum

P (ωp) = 〈upu
∗
p〉 . (8)

The quadratic term is called bispectrum

B(ωk, ωl) = 〈ukulu
∗
k+l〉 , (9)

3 in practice the ensemble averaging can often be replaced by an averaging over time.
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and the cubic term trispectrum4

T (ωk, ωl, ωm) = 〈ukulumu
∗
k+l+m〉 . (10)

Higher order spectra can therefore be seen as generalizations of the Fourier power
spectrum. The bispectrum measures the amount of phase coherence between
three Fourier modes that obey the frequency summation rule ωk +ωl = ωp. The
bispectrum vanishes unless the phases of the modes are correlated, i.e. B(ωk, ωl)
has zero expectation unless the phase difference arg uk + arg ul − arg uk+l is
constant. Trispectra in the same way measure the amount of phase coherence
between four modes.

Figure 3 illustrates this concept of phase coherence for a numerical simulation
of a decay instability occurring in a system of three Langmuir waves and one
ion-sound wave [42]. The phase of the each wave, taken independently, behaves
essentially in a random way, but the phase difference remains almost constant.

Fig. 3. Sine of the phase difference between three resonant Langmuir waves. After an
initial transient, the phase difference settles down to a constant value (upper panel).
If the system is slightly detuned from resonance, then the phase difference on average
still remains close to zero (lower panel). Figure taken from [42].

It is often more convenient to use normalized quantities. Such a normalization
can be performed in different ways (see for example [38]). The usual solution is
based on Schwartz’s inequality. This leads to a normalized bispectrum, called
bicoherence

b2(ωk, ωl) =
|B(ωk, ωl)|2

〈|ukul|2〉〈|uk+l|2〉 . (11)

and a normalized trispectrum, called tricoherence

t2(ωk, ωl, ωm) =
|T (ωk, ωl, ωm)|2

〈|ukulum|2〉〈|uk+l+m|2〉 . (12)

Both quantities are real and bounded by 0 and 1.
4 the true definition of the trispectrum is not a fourth order moment like here, but

a fourth order cumulant T (ωk, ωl, ωm) = 〈ukulumu∗k+l+m〉 − 〈ukul〉〈umu∗k+l+m〉 −
〈ukum〉〈ulu

∗
k+l+m〉 − 〈uku∗k+l+m〉〈ulum〉
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The interpretation of the bicoherence issues from that of the bispectrum: it
measures the proportion of the signal energy at any bifrequency (ωk, ωl) that
is quadratically phase coupled to ωk+l. The tricoherence similarly quantifies
cubic phase couplings between triplets (ωk, ωl, ωm). Such phase couplings are a
hallmark of nonlinearity, which is the main motivation for using higher order
spectra.

Several applications of bicoherence to space plasmas have been reported, such
as Langmuir wave coalescence in the solar wind [6], parametric instabilities in
the ionosphere [65], the interaction of radio emitters with the ionosphere [41],
nonlinear structures in the magnetosphere [20], and simulations of beam-plasma
interactions [66]. Tricoherent analysis so far has only been reported for weak
turbulence simulations [38,72] and in magnetospheric turbulence [23].

2.3 Some Properties of Higher Order Spectra

Higher order spectra are intimately connected to higher order statistics. If a
time series has a Gaussian probability density, then all higher order spectra are
automatically equal to zero. Conversely, nonlinear wave interactions necessar-
ily give rise to non-Gaussian probability densities. The choice of the technique
essentially depends on the type of coupling: if few Fourier modes are coupled,
then higher order spectra are appropriate since the deviation from Gaussianity
may be weak. Conversely, if the coupling involves many different modes (e.g. in
fully developed turbulence) then higher order spectra will be small whereas the
probability may significantly depart from a Gaussian.

Higher order spectra have been defined so far by considering a single quantity
u(x, t), but they may be extended to study the phase coupling between different
variables. To distinguish the two situations one should use the prefix auto- for
a single quantity (i.e. the autobicoherence) and cross- for multiple quantities.
Beam-plasma interactions is a typical example in which the cross-bicoherence
is appropriate. According to the Zakharov equations the formation of cavitons
occurs via a coupling between the electron density n and the electric field E,
with n ∼ E2. To characterize this coupling, one must use the cross-bicoherence
BnEE(ωk, ωl) = 〈EkEln

∗
k+l〉 and not the autobicoherence, see for example [72].

The representation of higher order spectra can be a problem, since these
quantities depend on several variables. Fortunately, one can take advantage of
symmetry properties and strongly reduce the non-redundant frequency domain
(called principal domain ). The principal domain of the bicoherence is shown in
Fig. 4 for a real signal. For the tricoherence it is a prism in 3D [52].

Let us now illustrate these concepts with two examples:

Example 1: We reconsider the AMPTE magnetic field data from Sect. 2.1. The
turbulent magnetic field is known to contain nonlinear structures that steepen
and progressively decay into dispersive whistler wave packets. This decay oc-
curs via nonlinear wave interactions, and thus gives rise to phase couplings
that should appear in the wavefield autobicoherence and autotricoherence.
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Fig. 4. Principal domain of the bicoherence. The Nyquist theorem restricts the display
to the area enclosed by a dashed line. For the autobicoherence, the principal domain
is I, for the cross-bicoherence it consists of I and II.

Fig. 5. Autobispectrum (left) and autobicoherence (right) of the AMPTE magnetic
field data. The magnetic field component with the largest variance is analysed and
the display is restricted to the principal domain. For convenience the power spectral
density is shown below each plot. The number of samples is 12000 and the display has
deliberately been cut off at 2Hz (the Nyquist frequency is 8Hz).

Figure 5 shows the bispectrum and the bicoherence. The former reveals a
featureless but significant level of wave coupling, with most of the energy con-
centrated in low frequency modes. The coupling strength, however, cannot
be assessed by lack of normalization. The bicoherence in contrast shows a
significant phase coupling between Fourier modes that satisfy the resonance
condition f1 + f2 = 0.6 Hz, with f1 ≤ f2 ≤ 0.6 Hz. Such a phase coupling
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suggests that the large-scale magnetic structures are somehow coupled to the
whistler waves, whose frequency peaks around 0.6 Hz. The coupling is sig-
nificant (b2 ≈ 0.7) but it does not reach higher levels because the nonlinear
structures are embedded in a randomly fluctuating wavefield.

Example 2: A different aspect is revealed by water level fluctuations as re-
corded in a laboratory experiment. The swell results in regular and fairly
monochromatic gravity waves on top of which small amplitude capillary waves
are produced by wind. The bicoherence analysis of these water waves is shown
in Fig. 6.

Fig. 6. Excerpt (left) and autobicoherence (right) of the water level fluctuations. For
convenience the power spectral density is shown below the bicoherence. The number
of samples is 65536 and the display has been cut off at 6Hz.

The salient features of the bicoherence are a marked peak at 1.2 + 1.2 =
2.4 Hz and a ridge 1.2 + f = 1.2 + f with f > 1.2 Hz. The former is the
classical signature of harmonic generation (the fundamental is coupled to the
first harmonic). One can also distinguish higher harmonics. The ridge means
that the fundamental mode is phase coupled to all high-frequency modes, and
not just to its harmonics. Indeed, the high frequency capillary waves are always
located on top of the swell (i.e. they are phase coupled to the fundamental)
because this is where they are most efficiently generated by the wind.

These two examples reveal the existence of significant phase couplings be-
tween specific Fourier modes. We must stress, however, that a phase coupling
does not necessarily imply the existence of nonlinear wave interactions per se. In
the first example, the ridge could be interpreted both as a decay (0.6 → f1 + f2)
or as an inverse decay (f1 + f2 → 0.6) process. At this stage we cannot tell
whether the observed phase coupling is accompanied by an energy transfer be-
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tween Fourier modes (i.e. the wavefield is dynamically evolving) or whether it is
just the remnant of some nonlinear effect that took place in the past or maybe
even some nonlinear instrumental effect. This caveat has been highlighted by
Pécseli and Trulsen [57]. To unambiguously assess nonlinear wave interactions,
multipoint measurements are needed, see Sect. 2.6.

2.4 Estimating Higher Order Spectra

Higher order spectra can be estimated either by direct computation of the higher
order moments from Fourier transforms, or by fitting the data with a parametric
model.

The Fourier approach is computationally straightforward: the time series
is divided intoM sequences, for each of which the Fourier transform is computed.
An unbiased estimate of the bispectrum is then

B̂(ωk, ωl) =
1
M

M∑
i=1

u
(i)
k u

(i)
l u

∗ (i)
k+l , (13)

The empirical estimate of the bicoherence becomes

b̂2(ωk, ωl) =

∣∣∣B̂(ωk, ωl)
∣∣∣2

1
M

∑M
i=1

∣∣∣u(i)
k u

(i)
l

∣∣∣2 1
M

∑M
i=1

∣∣∣u(i)
k+l

∣∣∣2 . (14)

Careful validation of higher order quantities is essential as these quantities are
prone to errors. Hinich and Clay [31] have shown that the variance of the bico-
herence is approximately

Var[b̂2] ≈ 4b̂2

M

(
1− b̂2

)
, (15)

and that this quantity has a bias

bias[b̂2] ≈ 4
√

3
M

. (16)

It is therefore essential to work with long and stationary time series (i.e.M 	 1)
in order to properly assess low bicoherence levels. This constraint becomes even
more stringent for tricoherence estimates.

The need for long time series can be partly alleviated by using alternative
spectral representations. Morlet wavelets, because of their better time-frequency
resolution, can improve the estimates [74,20].

A different, so-called parametric approach consists in fitting the time series
with a parametric model, such as an autoregressive (AR) model [43]. If this model
correctly fits the data, the one can retrieve from it not only the spectrum but
also higher order spectra. For a detailed description, see [54] and [48].
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Parametric methods are appropriate for short time series, or for time series
whose spectrum and higher order spectra are either featureless (i.e. they are
smooth functions of the frequency), or contain a few narrow spectral lines [58].
Fourier methods are easier to apply and do not require any decision on the type
of model that should be fitted.

2.5 Higher Order Spectra: More Properties

Higher order spectra share some other properties that can be of interest for the
analysis of wave phenomena. The bicoherence, for example, can be used to detect
asymmetries in a time series. Time-reversal asymmetries (u(t)↔ u(−t)) give rise
to purely imaginary bispectra, so to detect them one should use a variant of the
bicoherence

b2i (ωk, ωl) =
|�B(ωk, ωl)|2

〈|ukul|2〉〈|uk+l|2〉 . (17)

Up-down asymmetries (u(t) ↔ −u(t)) show up in the real bispectrum only, so
the quantity to be used is

b2r(ωk, ωl) =
|�B(ωk, ωl)|2

〈|ukul|2〉〈|uk+l|2〉 . (18)

The distinction between symmetries is useful for separating concurrent nonlin-
ear processes: time-reversal asymmetries arise during nonlinear wave steepening,
whereas up-down asymmetries may occur in wavefields with cavitons. These
properties are illustrated in Fig. 7, which shows the “real” and “imaginary” bi-
coherences for the gravity wave example. Water waves are known to have strong
up-down asymmetries, and this indeed shows up in large values of the “real”
bicoherence b2r. The small value of b2i suggests that the waves are still far from
overturning, in spite of the wind strength.

Higher order spectra can easily be generalized from temporal to spatio-
temporal couplings. Space plasmas are truly spatio-temporal systems, so a non-
linear wave coupling should not only involve resonant frequencies, but also res-
onant wavenumbers. Three-wave interactions, for example, can only occur be-
tween waves that satisfy the two resonance conditions{

ωk + ωl = ωp

kk + kl = kp
. (19)

The first condition can be interpreted as a conservation of energy while the
second is a conservation in momentum. This resonance is illustrated in Fig. 8
for one-dimensional case.

In practice, analyses in both ω and k space are hard to achieve unless the
data offer sufficient spatial and temporal coverage. The user thus often has to
make hypotheses on one of the two quantities in order to compensate for the lack
of information on the other. In the case of strong convection, or if the Taylor
hypothesis (i.e. if the turbulence is frozen in the wavefield, see [26]) holds, then
ω ∝ |k| and so no spatial resolution is actually needed.
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Fig. 7. Autobicoherence of the water level fluctuations (as in Fig. 6), using the real
bispectrum (left) and the imaginary one (right).

Fig. 8. Example of a plasma with two dispersion relations (a) and (b), and a possible
three-wave interaction, described as vectors in (k, ω) space. Only one dimension in
space is considered here.

u(t) y(t)
?

upstream downstream

Fig. 9. The plasma behaves like a black box, which reacts to the input u(t) by giving a
response y(t). The nonlinear properties of the plasma are recovered by modelling this
response.

2.6 Spectral Energy Transfers

One of the main shortcomings of higher order spectra is their inability to tell the
origin of the phase coupling. Is it the consequence of an instrumental nonlinearity,
is it the remnant of a nonlinearity that took place some time during the wavefield
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evolution, or does it result from an ongoing dynamical process? To answer this
question, we must go back to the Volterra kernels (eq. 3) and define a new
quantity, called spectral energy transfer [69,67].

For a large ensemble of waves with different frequencies, the random phase
approximation implies that

〈u∗puq〉 = Pp δpq , (20)

where Pp = P (ωp) is the power spectrum. Combining this with eq. 4 gives

∂Pp

∂x
= γpPp +

∑
m+n=p

Tm,n +
∑

m+n+k=p

Tm,n,k + · · · (21)

This equation expresses the spatial variation in the spectral energy density at
a given frequency (or wavenumber) as a sum of linear and nonlinear terms.
The first term (γpPp) describes linear processes, the second (Tm,n) quadratic
processes, etc. The latter tells us how much energy is being transferred to (T > 0)
or away (T < 0) from the p’th Fourier mode through nonlinear interactions with
other modes [35].

Spectral energy transfers are among the most relevant quantities for describ-
ing nonlinear wave interactions. Unfortunately, they are rarely estimated because
they require high spatio-temporal coverage and involve ill-conditioned systems.
Significant results have nevertheless been reported with quadratically nonlinear
models in laboratory plasma turbulence [69], for magnetospheric turbulence [23],
and for Langmuir wave turbulence [72].

The numerical problems encountered in estimating spectral energy transfers
may be alleviated by estimating the Volterra kernels in the time domain, using
parametric models, and subsequently computing the energy transfers in Fourier
space. Indeed, time-domain models are often quite efficient in capturing nonlin-
ear features in a small number of terms. Polynomial models offer flexibility at a
reasonable computational expense. The most widely used class of models is called
Nonlinear AutoRegressive Moving Average with eXogeneous input (NARMAX)
[56].

Consider the simplest case in which two measurements y(t) and u(t) of the
same quantity are made simultaneously at closely spaced locations. Let the time
evolution of one be a direct consequence of the other. This typically occurs when
making two-point measurements in a convected wavefield. The nonlinear transfer
function which relates the “output” y(t) to the “input” u(t) then embodies
the nonlinear dynamics of the plasma, which would be called a black box. By
modelling this transfer function, one can recover the salient nonlinear properties
of the plasma, as shown by Ritz and Powers [67]. This concept not only applies
to turbulence, but also to solar-terrestrial interactions, where it can be used to
make predictions [76].

In practice, both u(t) and y(t) are continuously sampled, so a discrete transfer
function model is needed. NARMAX models express the output yi = y(ti) at a
given time as a polynomial involving all possible combinations (up to a given
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order) of past outputs, past and present inputs, and past residual errors

yi = P[yi−1, . . . , yi−n, ui, ui−1, . . . , ui−n, εi−1, . . . , εi−n] + εi , (22)

where the residual error εi is the difference between the true output and the
model response.

An application of NARMAX modelling to magnetospheric turbulence (based
on the AMPTE dataset of this book) was reported in [17]. The capacity of
such models to fit nonlinear systems with a few polynomial terms is clear asset.
Unfortunately some of the mathematical tools associated with these models are
not in the public domain.

3 Higher Order Statistics

Higher order statistics and higher order spectra are intimately related, but they
are generally encountered in different contexts. When a system is driven away
from the linear-deterministic corner in Fig. 1, then time-domain representations
are often more appropriate than spectral representations.

Most of the literature on probability theory and statistics deals with random
variables whose probability density5 function (pdf) is a Gaussian. Gaussian dis-
tributions, however, are not all there is to statistics. Very often it is precisely
the deviation from Gaussianity that contains pertinent information about the
underlying physics. The tails of the distribution, which represent large but rare
events, are of particular interest and have received much attention. Many statis-
tical tools have been developed for this purpose. Most of them have emerged in
the context of turbulence [26], but new paradigms such as complexity [5], self-
organization [34] and anomalous transport [10] today stimulate the development
of novel tools. Meanwhile, it should be stressed that the proper estimation of a
pdf itself can already be a tricky task; see [70] for a thorough study.

3.1 Scale Invariance

Symmetry is one of the key concepts behind higher order statistical analysis.
Many physical systems exhibit symmetries. In turbulent wavefields, for example,
quantities like the velocity field often remain unchanged under the following
transformation

v(x, t) −→ λv(λax, λbt) (23)

Because of these symmetries, the system is said to be scale invariant. Roughly
speaking, scale invariance means that within a wide range of (spatial or temporal)
scales, it is not possible to identify a predominant scale. The property of interest
is the interplay between scales, rather than the role played by characteristic
scales. This property is typical of thermodynamical systems that are at a critical
point and can be quantified in many different ways.
5 From a mathematical point of view, the terms probability density and probability

distribution bear different meanings. Here, as in the physics literature, they are used
interchangeably.
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Spectral Signatures. Scale invariance can easily be expressed in the Fourier
domain. Equation 23 implies that the Fourier spectra in frequency (and in
wavenumber) of a scale invariant quantity behave like power laws with no char-
acteristic cutoff frequency (respectively cutoff wavenumber)

P (ω) ∝ ω−β . (24)

It should be stressed that this property is a necessary but not a sufficient con-
dition. The same power law scaling should hold for all higher order spectra.
Structure function analysis (see below) will provide a means for getting more
information.

Exact power laws never occur in real life. Mesoscales always provide some low-
frequency cutoff (otherwise the variance of the process would diverge) whereas
damping or viscosity cause a high frequency cutoff. In between, the spectrum
is often corrupted by spectral lines associated with plasma waves. In spite of
this, power laws extending over several decades have been observed in the solar
wind [29] and in simulations. Inside the magnetosphere, this range is generally
shorter. For a power law to be meaningful, it should cover at least one decade.

Equation 24 suggests that the scaling exponent or spectral index β can be
directly estimated from the Fourier power spectrum. It has been shown since
[3] that wavelets are better for that purpose because they are inherently self-
similar. The distinction between the two approaches becomes particularly im-
portant when one has to deal with short and noise-corrupted data. Figure 10
shows an example based on a synthetic data set. A time series with N = 512
samples was generated with a spectral index β = 2. The figure compares the
spectrum obtained by standard FFT and by using a discrete wavelet transform
with Daubechies wavelets. Clearly, the latter succeeds much better in capturing
the power law scaling.

Scale-Invariance and Structure Functions. Since the spectrum is not suf-
ficient for assessing scale invariance, it is necessary to look at higher order mo-
ments. In addition to this, one should also consider spatial gradients and higher
order derivatives in order to distinguish temporal variations from spatial struc-
tures. For a stationary Gaussian process, these derivatives all must have a Gaus-
sian pdf.

In practice, it is quite difficult to properly separate spatial structures from
temporal variations, even with multipoint measurements. Therefore, instead of
computing gradients, it is customary to compute spatial increments

δy = y(x + l, t)− y(x, t) . (25)

Furthermore, assumptions are often made to convert spatial structures into tem-
poral dynamics. In the solar wind, for example, the turbulence is nearly frozen
in the wavefield (this is better known as the Taylor hypothesis, see [26]) so that
one can reasonably set τ = l/v and hence for a scalar quantity

δy = y(t+ τ)− y(t) . (26)
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Fig. 10. Power spectral density of a synthetic time series with N = 512 samples and
a spectral index β = 2: a) stands for standard periodogram estimate with a single
Welch window, b) was obtained with 3rd order Daubechies wavelets (the scales a are
converted into frequencies by ω = 1/a), c) gives the exact result. The power spectra
have been shifted vertically for easier comparison.

Figure 11 shows an excerpt of magnetic field data gathered by Ulysses in 1994
within the solar wind from the south solar pole. The wavefield mainly consists of
Alfvén waves that rotate on a sphere of constant radius, hence the peculiar pdf,
which is much more akin to a uniform than to a Gaussian distribution. The pdfs
of the differenced data on the contrary exhibit strongly enhanced tails. For small
τ , the time series shows large bursts and the pdf is highly non-Gaussian. The
larger τ is, the closer the pdfs are to the original one, because distant fluctuations
are essentially independent. The study of this departure from Gaussianity is a
central research issue in many fields because it is indicative of the microscopic
turbulent processes.

The simplest way of quantifying the various shapes of the pdfs consists is
to compute their higher order moments. This is called the structure function
approach

Sp(τ) = 〈|y(t+ τ)− y(t)|p〉 . (27)

A large amount of literature has been devoted to this technique. For general ref-
erences, see [55,26,9]; introductions to plasmas can be found in [8,47,64]. Struc-
ture functions can in principle be computed from any physical quantity, but a
meaningful comparison against theory requires the use of natural variables. In
space plasmas, the natural variables for Alfvén waves are the Elsässer variables
Z± = V ±VA, where VA is the Alfvén velocity [47].

An interesting result is the existence of a universal scaling law when the
wavefield is scale-invariant

Sp(τ) ∝ τα(p). (28)
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Fig. 11. Excerpt of Ulysses magnetic field data (left column) and the associated pdfs
(right column). Each row corresponds to a different value of τ , the first row showing
the original data. The number of samples is 20000 and the Bx component was used. All
the pdfs have been rescaled to have unit standard deviation and zero mean; a Gaussian
distribution with zero mean and unit standard deviation is shown for comparison. The
sampling period is 1 min. and error bars correspond to ±1 standard deviation.

The larger order p is, the more emphasis is put on the tails of the distribution and
the more difficult it becomes to measure the scaling exponent α(p). The range
in which this scaling holds is called inertial range. Any deviation of α(p) from
a linear dependence is an indication for irregular redistribution of the energy
in the turbulent cascade. In the classical K41 model by Kolmogorov [26], the
turbulent eddies are supposed to be in a state of local equilibrium: each eddy
decays into smaller ones, which again give rise to smaller eddies, and so on.
For this model, one obtains α = p/3. Many theoretical models for turbulent
cascades have since been developed to match the observations [55,9]. The model
developed by Castaing and coworkers is today widely used both in neutral fluids
and in plasmas [64].

As an example, consider a turbulent cascade in which the eddies are not
space filling but occupy a domain whose physical dimension is D ≤ 3. One
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should then have α(p) = 3 − D + p(D − 2)/3. This property is illustrated in
Fig. 12 for three cases: a) the K41 model in which each eddy is space-filling
(D=3), b) the monofractal case in which each eddy occupies a fixed fraction
of space (D is fixed), and c) the multifractal case in which the occupancy of
space varies locally (D varies). A sparse filling of space typically results from
a stretching of eddies into filamentary vortices. Numerical simulations indeed
support such a picture [8].

Fig. 12. Illustration of the turbulent cascade in 2D, in which each turbulent eddy (gray
area) decays into four smaller eddies. Cases a) to c) respectively correspond to the the
Kolmogorov K41 model with space-filling eddies, the monofractal cascade model, and
the multifractal cascade model.

Burlaga [12] first pointed out the striking similarity between solar wind turbu-
lence and hydrodynamic turbulence, a result confirmed since by many [46,13,32].
Structure function analysis has also been applied to other quantities, such as
geomagnetic indices [73]. All these studies suggest that space plasmas are scale-
invariant but that this scaling varies locally, hence the name multifractal. The
macroscopic consequence of this local property is irregular behaviour with sud-
den bursts of activity called intermittency.

The structure function associated with the Ulysses data is shown in Figure
13, for orders between p = 1 and p = 6. It can be argued that an inertial
range is apparent for τ = 3 − 30 min. In this range, the scaling exponent is a
convex function of p, which supports the multifractal character of the turbulent
wavefield. The figure also shows another quantity

Ap(τ) =
Sp(τ)
S2(τ)p/2 . (29)

For a Gaussian distribution, Ap(τ) should not depend on the scale τ . This quan-
tity confirms the existence of wide distributions for small τ and on the contrary
rather narrow distributions for large τ .

Structure Functions: Pitfalls. Structure functions suffer from a number of
problems. First, theoretical models are not as easy to develop for magnetofluids
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Fig. 13. Structure function analysis of Ulysses magnetic field data: the structure func-
tion Sp(τ) (top left), the normalized structure function Ap(τ) (top right), and the
scaling exponent α(p) estimated between τ = 3 and τ = 30 (bottom left). The data
set is the same as in Fig. 11.

as for neutral fluids. Some obstacles to a straightforward interpretation are sym-
metry breaking due to the magnetic field, the need to have Elsässer variables,
and the questionable validity of the Taylor hypothesis in space plasmas.

Furthermore, structure functions, like all higher order quantities, become
very vulnerable to outliers and lack of statistics as the order p increases. This
problem has often been overlooked in the literature. It turns out that moments
beyond p = 4 or p = 5 often cannot be meaningfully assessed, even with large
data sets [21,32]. Therefore, great care should be taken in interpreting results.

Scale Invariance: Beyond Structure Functions. Structure functions have
enjoyed great popularity so far, but there are many alternatives to the charac-
terization of scale invariance. It has been shown [51], for example, that wavelet-
based structure function estimates perform better. The reason for this is the
self-similar nature of wavelets.

Scale invariance can be probed by many other quantities, which are con-
ceptually related the topological invariants, information measures, etc. Since
the domain of application largely exceeds plasma physics and nonlinear time
series analysis, any classification tends to be arbitrary. We just mention here
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multifractal analysis, whose purpose is to measure the singularity spectrum (or
multifractal spectrum). The latter is indicative of the dimension of the region
over which a spectral index β of a given value is observed. Singularity spectra
are in turn connected to generalized dimensions [5]. Figure 14 shows an example
of singularity spectrum that was computed by Consolini [18] from the auroral
electrojet (AE) geomagnetic index. For a monofractal process, only one value of
β should occur, whereas we observe a broad distribution of values that indicative
of a multifractal process.

Fig. 14. Singularity spectrum from auroral electrojet data. Dots are experimental data
points and the line comes from a model that is based on a two-scale Cantor set. Figure
adapted from [18].

The robust estimation of singularity spectra is a delicate task and validation
is not straightforward. The estimation of singularity spectra can be done in
various ways, e.g. [16]. These techniques are outperformed today by a wavelet
method called wave transform modulus maxima [4]. Clearly, the prime result of
interest is not necessarily the singularity spectrum itself, but its variation under
different conditions. There remains an important issue to determine under what
conditions it remains invariant.

Finally, let us mention the theory of large deviations [71] as an alternative
approach to the modelling of pdfs with long tails. Its relevance for many geo-
physical phenomena (such as earthquakes) may well extend to space plasmas.

3.2 Long-Range Dependence and Self-organized Criticality

Long-range dependence is just another manifestation of scale invariance. But,
since it is often studied in connection with (Forced) Self-Organized Criticality
(FSOC or SOC), it deserves a section on its own.
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The SOC paradigm has recently enjoyed great popularity as a possible ex-
planation for a wide range of phenomena that are observed in complex systems.
SOC occurs in spatially-extended metastable systems, in which small pertur-
bations can trigger fluctuations or avalanches of any size. The main signatures
of SOC are scale invariance and long-range correlations, and a fractal topology
(i.e. a self-similar spatial structure). The existence of long-range correlations,
however, does not imply the existence of SOC per se. For a general reference
on SOC, see [34] and for a discussion on the quantification of long-range de-
pendence see [7]. Whether SOC is really applicable to space plasma phenomena
such as turbulence is still a matter of controversy (e.g. [14]); meanwhile, some
fingerprints of SOC have been identified in magnetospheric dynamics [77,19].

Spectral Signatures. Processes with long-range dependence are sometimes
termed 1/f processes because they often exhibit power law spectra P (ω) ∝ ω−β

with a spectral index β that is close to 1. The limiting case β = 1 corresponds to
a singularity with infinite range correlations. Therefore, a necessary (but not a
sufficient) condition for having long-range dependence is to observe spectra that
follow a power law down to the smallest frequencies (or wavenumbers). A cutoff
always eventually occurs due to the finite size of the system.

As argued before in Sec. 3.1, the estimation of the spectral index β should
be done with great care. In particular, estimators based on wavelets [3] should
systematically be preferred.

Figure 15 shows an application to the AE geomagnetic index, a quantity that
is often used because of its close connection with the dynamics of substorms. One
year of one-minute resolution data were analyzed. The Fourier spectrum reveals
a broken power law, with approximately a ω−2 scaling at high frequencies and
a ω−1 scaling below. The wavelet-based spectrum gives much better evidence
for this broken power law, and in addition reveals the cutoff frequencies more
evidently. The spectrum eventually saturates around a period of a few tens of
days, which is likely to be associated with the solar rotation period. From the
wavelet spectrum, we estimate the following spectral indices: β = 0.96 ± 0.18
for periods from about 4 hours up to 4 days, and β = 1.87 ± 0.03 for periods
between 1 minute and approximately 4 hours. An accurate assessment of these
spectral indices is important for determining the underlying physical models.

Autocorrelation. Most simple physical models (i.e. Markov models, autore-
gressive models) give rise to exponentially decaying autocorrelation functions.
Such a functional dependence means that the process has a characteristic time
scale (or spatial scale). For scale invariant processes, the autocorrelation function
should instead decay algebraically

C(τ) ∝ τ−γ , (30)

where the exponent is connected to the spectral index by γ = 1 − β. Strictly
speaking, a process is called long-range correlated when 0 < γ < 1.
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Fig. 15. Power spectrum (left) and autocorrelation function (right) of one year of AE
data from 1986. The sampling period is 1 minute. The power spectrum was estimated
using a periodogram with 5 windows, and the wavelet spectrum (dots) with 4th order
Daubechies wavelets. The wavelet scales are connected to frequencies by ω = 1/a. The
two spectra have been shifted vertically to ease comparison.

Unfortunately, autocorrelation functions provide a poor estimate of the in-
dices β and γ [7]. This is illustrated in Fig. 15: note how difficult it is to recognize
a power law scaling in the autocorrelation function; an exponential gives almost
as good a fit.

Waiting Time Statistics. Another interesting statistical measure is the wait-
ing-time or inter-burst time distributions. The idea is to consider the interval
between bursts rather than the burst size. Many simple models yield distribu-
tions of intervals that follow a Poisson law with exponential tails, whereas scale
invariant systems should give a power law. See [25] for an application to the AE
index. These methods are receiving today much attention in the context of solar
physics [2].

0 0.5 1 1.5 2
0

500

1000

time [days]

A
E

Fig. 16. Excerpt of the AE index data. Waiting times are based on the intervals be-
tween each successive crossing of the AE = 200 line.
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Fig. 17. Waiting time statistics for the AE index in 1986. The pdfs of the time intervals
between successive crossings of the AE = 200 amplitude are shown. Left plot is with
log-log axes and plot with lin-log axes.

An example is shown in Fig. 17, again based on one year of AE index data.
An excerpt of the time series is shown in Fig. 16. We computed the duration of
the intervals between successive values where the index crosses the AE = 200
amplitude line. Changing this level does not significantly affect the results as
long as it stays in the bulk of the distribution. The pdf of the time intervals
clearly shows a power law scaling that extends over almost two decades (left
plot), and which can definitely not be fitted with an exponential (right plot).
For small intervals, the results are indicative of the magnetospheric dynamics,
whereas long intervals may be affected by external driving terms such as the
solar wind, hence the deviation from the power law scaling.

Other Measures. One can think of many other possible measures for long-
range dependence; the main problem is to keep physical insight. The Hurst ex-
ponent has been popular lately in fusion plasmas, even though its interpretation
can be ambiguous [7]. The method itself is called Hurst rescaled range analysis;
it was originally proposed by Hurst, who used it to detect persisting trends in
time series (see for example [45]). A recent application of the Hurst exponent
to tokamak plasma turbulence was used to claim the existence of long-range
dependence and SOC [15]. Similar conclusions were drawn from the analysis of
AE data [60].

3.3 Lévy Walks and Anomalous Transport

Recently, a great deal of attention has been paid to anomalous (i.e. non-diffusive)
transport in fluids. For low frequency magnetic turbulence and a strong back-
ground magnetic field, the motion of charged particles is approximately along the
magnetic field lines. When the fluctuation level increases and/or the anisotropy
of the magnetic field changes, the braided topology of the magnetic field may
generate new types of transport regimes that are not necessarily diffusive any-
more. This again results in scale-invariance and non-Gaussian properties.
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Anomalous transport can be appropriately described in the framework of
Lévy distributions [10,62]. Consider the probability distribution of the distance
and the duration of a particle trajectory between two successive bounces. Anoma-
lous transport is intimately associated with distributions that asymptotically
decay as power laws. This means that the particle has a significant probability
to move long distances. Furthermore, some of the moments of the distribution
(such as the mean distance, the variance, etc.) may actually diverge. Studies of
Lagrangian transport of tracer particles in fluid experiments [63] and in plasma
turbulence simulations [59] have revealed the mechanisms by which Lévy walks
occur. The resulting anomalous transport can have an noticeable impact on
macroscopic plasma properties, and may explain for example percolation from
the solar wind into the magnetosheath.

Fig. 18. Trajectory in 2D space of a particle with Brownian motion (left) and Lévy
random walk (right).

Figure 18 compares the trajectories in 2D space of a particle with standard
random walk motion (i.e. Brownian motion) and a particle that makes Lévy
random walks. The first has a diffusive motion whereas the second will give
super-diffusion. The characterization of such transport regimes is appropriately
done by using a Lagrangian approach with test particles. Let 〈Δx2〉τ be the
mean squared distance traveled by a particle during a time interval τ . Then

〈Δx2〉τ = 2Dτμ ,

where D is the diffusion coefficient and μ the diffusion exponent. Brownian
motion with standard diffusion corresponds to the case μ = 1, μ < 1 is called
subdiffusion, μ > 1 superdiffusion, and μ = 2 corresponds to ballistic motion6.

As an example we consider test particle simulations based on a 2-D model
[39]. The scaling of the mean squared displacement with the observation time is
shown in Fig. 19. A power law is indeed apparent over several decades. Below the
ion gyrofrequency, the scaling exponent is α = 2, in agreement with the ballistic
nature of the ion gyration. Above the gyrofrequency, however, the exponent α
6 Note that for processes with Gaussian statistics, the value of μ is connected to the

spectral index β.
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Fig. 19. Scaling of the mean square displacement along the magnetic field vs travel
time τ . The slopes of the straight lines are μ = 1.8 (full line) and μ = 2.0 (dashed line).

stays close to 1.8, thereby suggesting that the motion is neither diffusive, nor
ballistic. The deviation at largest time intervals is a finite sample size effect.

4 Outlook

The development of techniques for characterizing nonlinear processes is a chal-
lenging and rapidly expanding area. However, as the techniques tend to become
more and more sophisticated, there appears the risk of losing physical insight. It
is indeed tempting to gather many techniques in a toolbox, and then start doing
data mining.

In the next decades, significant outbreaks are expected (or at least hoped
for) in the following areas:

• The analysis of spatio-temporal processes, which include data from multipoint
measurements, 1D, 2D and 3D models. Our capacity of analyzing data dra-
matically drops as soon as a spatial dimension comes in, and most of the
results obtained so far are still based on time-domain techniques.

• As we increasingly deal with large and multivariate data sets that contain
a lot of redundant information, there is also a growing need for doing pre-
processing. This involves “reducing” the number of significant variables to
make them more tractable. It also means locating interesting features in the
data. Many techniques have been developed for that purpose, using either
classical methods (e.g. principal component analysis) or more novel concepts
such as artificial intelligence.

• Models have a significant advantage over experiments: they can produce long
records of data with a very low noise level. Many nonlinear models in ad-
dition show signatures of low-dimensional determinism, and therefore lend
themselves for a characterization of chaotic behaviour. Tools that have been
developed for that purpose (e.g. [61]) can nowadays provide deep insight into
the analytical properties of such models.
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